Longer distance solutions for bidi objectives

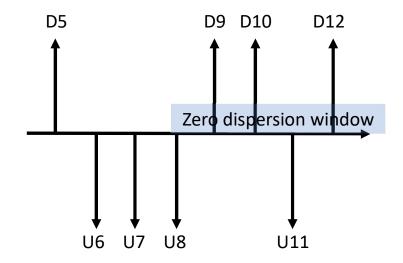
Frank Effenberger Futurewei Technologies Feb 2023

Introduction

- As explained in my January 2023 presentation, fiber dispersion makes achieving 100 Gb/s per wavelength signaling infeasible for 40 km.
 - Using conventional laser devices, there is no wavelength range that has assured low enough dispersion
- Therefore, 50 Gb/s per wavelength becomes the prime candidate for 40 km variants
- Let's first consider the hardest problem (200 Gb/s at 40 km), and then consider how we might reduce that to handle 100 Gb/s as 40 km

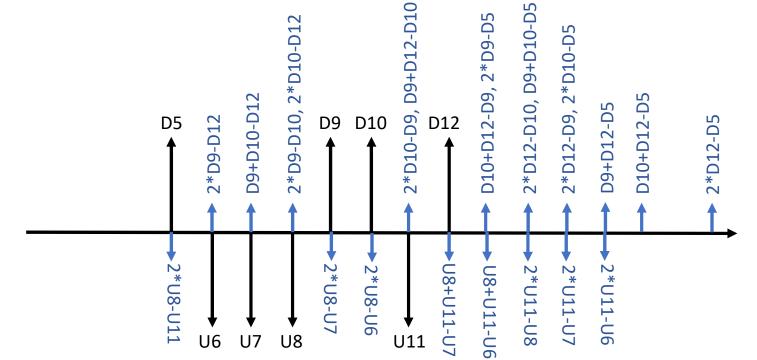
200 Gb/s using 50 Gb/s /wavelength

- Obviously, we will need 8 wavelengths to achieve the desired throughput
- There is a large industrial base built up on the 800 GHz wavelength plan used for various Ethernet PMDs
- Coincidentally, ITU-T is also working on standardizing this grid in the G.owdm standard
- Channels 5 through 12 (inclusive) are favored
 - Channels 1 through 4 have too much dispersion

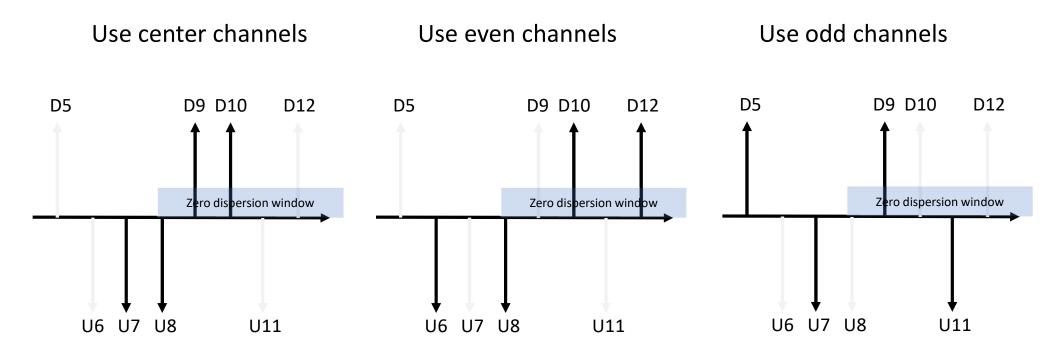

Ch	Freq	Wavelength
1	236.2	1269.23
2	235.4	1273.54
3	234.6	1277.89
4	233.8	1282.26
5	233.0	1286.66
6	232.2	1291.10
7	231.4	1295.56
8	230.6	1300.05
9	229.8	1304.58
10	229.0	1309.14
11	228.2	1313.73
12	227.4	1318.35

How to arrange the wavelengths?

- Given the grid channels 5 to 12, we need to choose which wavelengths are upstream, and which are downstream
- Simplest schemes
 - Block wise: upstream 5 to 8, downstream 9 to 12
 - Interleaved: upstream 5, 7, 9, 11; downstream 6, 8, 10, 12
- Unfortunately, these periodic wavelength arrangements result in very bad four wave mixing (FWM) effects, which will be made worse
 - Given the high powers likely to be needed to go 40 km
 - Using PAM4 modulation that is more sensitive to coherent crosstalk


Arrangement to avoid FWM

 The arrangement shown below manages to avoid all strong FWM interferences, provided the maximum spectral excursion of each carrier has a tolerance range of ±200 GHz



FWM products illustrated

- Black arrows show the channels
- Blue arrows show the FWM products

Channel reduction to obtain 100 Gb/s

Are two channel modules popular?

- What are the attractive module channel counts?
 - Single channel modules obviously nice
 - Couldn't be simpler, and typically fits within an SFP+ case
 - Quad channel modules are commercially very important
 - Four seems to be the magic number for high yield complexity limit
 - A significant ecosystem on QSFP has grown up
 - Dual channel modules are not so popular
 - Suffers the complexity of multiple channels without rewards of parallelism
- Do we really want to define a 2x50 Gb/s module for 100 Gb/s 40 km?
- Do we really want to define a 2x100 Gb/s module for 200 Gb/s 10 km?

Alternative way to 100 Gb/s 40 km

- Reuse the 8 channel plan from the 200 Gb/s design
- Operate each channel at 25 Gb/s NRZ
- This opens the possibility of making 100 Gb/s and 200 Gb/s field compatible by changing the modulation on each channel
- The link could also auto-negotiate the maximum rate depending on channel conditions
 - 100 Gb/s NRZ will have significant loss budget advantage over 200 Gb/s PAM4
- Admittedly, using 8 channels for 100 Gb/s does not give us the lowest channel count

Summary

- The 200 Gb/s 40 km objective will require 50 Gb/s per channel
 - An 8-wavelength plan that avoids FWM impairment is shown
- There are multiple ways for 100 Gb/s 40 km
 - A four wavelength down-selection from the 200 Gb/s PMD
 - Reuse 8 wavelength PMD and operate it at 25 Gb/s NRZ
- 200 Gb/s 10 km and 20 km objectives
 - A four wavelength down-selection, operating at 100 Gb/s per channel
 - Reuse the PMD from 40 km, continuing to use 50 Gb/s PAM4
- 100 Gb/s 10 km and 20 km objectives:
 - A building consensus around single channel 100 Gb/s

Thank you

Any questions?