BR20 power budget

Frank Effenberger

Futurewei Technologies
Jan 2024

Introduction

- Power budget for BR10 is baselined
- Power budget for BR40 has been presented in December, and expect a revised proposal in this meeting
- This leaves BR20 to be determined

BR20 loss budget

- In $802.3 \mathrm{cp}, \mathrm{BR} 20$ had a loss budget of 0 to 15 dB of total loss
- The origin of this number was mainly to promote similarity to the ITU-T G. 9806 Class S optics
- The value of 15 dB can be roughly understood to come from $20 \mathrm{~km} @ 0.5$ $\mathrm{dB} / \mathrm{km}$, plus 5 dB of excess connector loss
- This is a very conservative budget, assuming super pessimistic loss
- What has changed since then?
- G. 9806 efforts have determined that existing class S is infeasible, and it has been divided into class $\mathrm{S}_{\text {lower }}$ (0 to 10 dB) and $\mathrm{S}_{\text {upper }}(5$ to 15 dB)
- This gives us more options to find a similar PMD

802.3dk loss budget framework

- The primitive elements of loss can be assumed to be
- Fiber loss: $0.4 \mathrm{~dB} / \mathrm{km}$
- Connector losses: 2 dB (typical of 4 mated connector pairs with the installation crew eating peanut butter sandwiches during construction)
- These then produce the PMD link losses
- BR10: 6 dB ("rounded up" to 6.3 to match prior budget)
- BR20: $10 \mathrm{~dB} \lll$ This matches $\mathrm{S}_{\text {lower }}$!
- BR40: 18 dB <<< This matches BR40 from 802.3cp
- This framework works in our setting

Which budget should be the starting point?

- It would be useful if the $\mathrm{S}_{\text {lower }}$ and $\mathrm{S}_{\text {upper }}$ budgets could be achieved with the same receiver, as it enables a module that supports both ($T x$ power would have two modes)
- BR10 has a sensitivity that assumes a PIN detector (-6.1 dBm OMA)
- Using this, $\mathrm{S}_{\text {lower }}$ Tx OMA $>4.4 \mathrm{dBm}$, and $\mathrm{S}_{\text {upper }}$ OMA $>9.4 \mathrm{dBm}$ (difficult)
- BR40 has a sensitivity that assumes an APD (-12.8 dBm OMA)
- Using this, $\mathrm{S}_{\text {lower }}$ Tx OMA >-2.3dBm, and $\mathrm{S}_{\text {upper }}$ OMA $>2.7 \mathrm{dBm}$
- For this reason, using the BR40 Rx table as a basis is preferred

Proposed BR20 power budget values

Description	100GBASE-BR20	Unit
Average launch power MAX	-0.2	dBm
Average launch power MIN	-5.3	dBm
OMA MAX	0.0	dBm
OMA MIN (TDEC<=1.4 dB)	-2.3	dBm
Average receive power MAX	-0.2	dBm
Average receive power MIN	-15.3	dBm
Receiver OMA MIN	-12.8	dBm
Receive OMA MAX	0.0	dBm
Receiver damage threshold	1.0	dBm

Thank you

Any questions?

