50G based wavelength plan for BR40

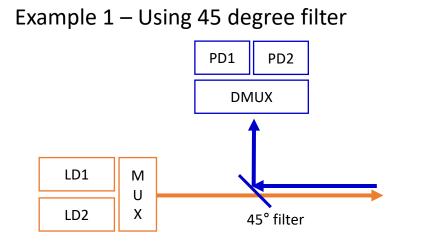
Han Hyub Lee and Hwan Seok Chung

Electronics and Telecommunications Research Institute

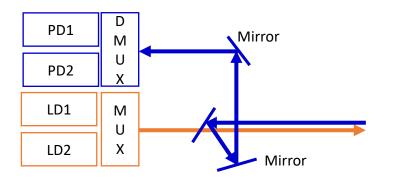
IEEE P802.3dk Greater than 50 Gb/s Bidirectional Optical Access PHYs Task Force

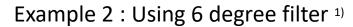
Introduction

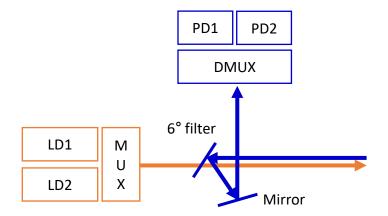
- Currently, there are discussions regarding wavelength plans for 100GBASE BR40:
 - 2 x 50G and 1 x 100G wavelength plans
- To standardize 1x100G wavelength plan, two wavelengths are required for bidirectional transmission. There is concern about CD penalty and power budget when transmitting 100 Gb/s signals over 40 km SMF.
- On the other hand, to standardize 2x50G wavelength plan, four wavelengths are needed. It has been
 proven that there is sufficient margin when transmitting 50 Gb/s signals over 40 km SMF and flexibility
 for wavelength plan.
- This contribution discusses advantages of 2 x 50G wavelength plan for BR40.

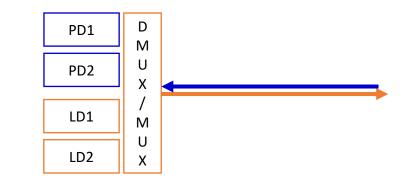

Advantages of 2x50G wavelength plan

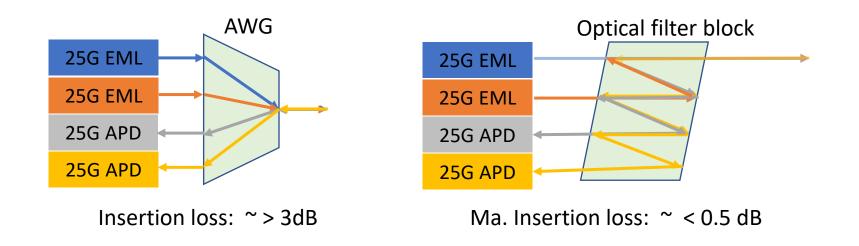
- Wide CD-limited wavelength range in O-band
 - No critical issues for 50 Gb/s signal over 40 km transmission, even with already deployed SMF
 - Provides flexibility in the wavelength plan
 - Various BOSA implementation method is possible
- High power budget
 - The 25Gbaud PAM4 receiver sensitivity is approximately 4 ~ 5 dB lower than that of the 50Gbaud PAM4 receiver sensitivity.
 - 22 dB of power budget can be supported using 25G EML instead of high-power SOA integrated EML.
- Low-cost optics
 - 25G optics are widely utilized in Ethernet applications, contributing to cost-effectiveness.


	10 km SMF	20 km SMF	40 km SMF
50GBASE-	LR BR10-D/U	BR20-D/U	ER BR40-D/U
200GBASE-	LR4 (4x50G)		ER4 (4x50G)
400GBASE-	LR8 (8x50G)		ER8 (8x50G)

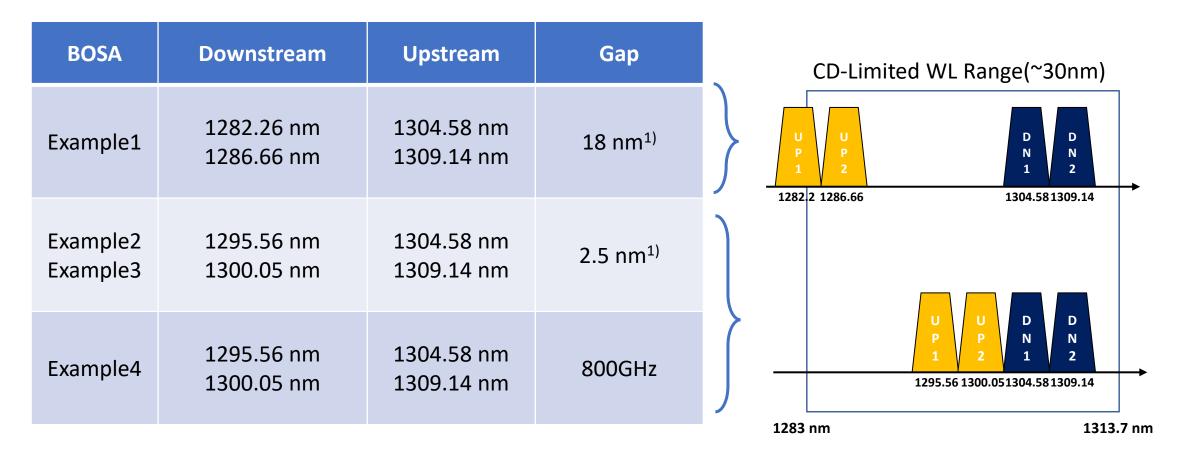



100GBASE BR40 BOSA configuration


Example 3 - Using 6 degree filter



Example 4 – Using optical block



- Two-channel Tx and Rx parts in 2x50G BOSA can be achieved using multiplexing and demultiplexing technology similar to ER4 Ethernet transceivers.
- 4 wavelengths MUX, DMUX are used for LAN-WDM TOSA or ROSA.
- The figure suggests implementing MUX/DMUX for two channels with a single optic, utilizing compact solutions like AWG or optical filter block.

Wavelength plan example

This wavelength plan example takes into account the LWMD wavelength and allows for flexible adjustments within the CD-limited WL range.

Summary

- Utilizing 50 Gb/s lane rate provides the advantage of a broad available wavelength range, with no issues in supporting BR40 power budget.
- The implementation of BOSA introduces complexity due to the necessity of using MUX/DMUX. However, leveraging existing integration technology should make the implementation relatively straightforward.
- On the other hand, multi channels BOSA technology will apply for 200GBASE-BR transceiver because 200GBASE-BR specification inherently requires multi-wavelength plan such as $4 \lambda x 50G$ or $2\lambda x 100G$.

