Revised parameters of 100GBASE-BR40

Tomoo Takahara, Fujitsu
Takuya Kanai, NTT Innovative Devices
Hirotaka Nakamura, NTT Innovative Devices

IEEE802.3dk April 2024 meeting

Supporters

- Mizuki Shirao
- Kei Masuyama

Mitsubishi Electric Corporation
Mitsubishi Electric Corporation

Background

- At the March meeting we proposed baseline on PMD specifications for 100GBASE-BR40.
- We were pointed out a contradiction of "Damage threshold".
- In this contribution,
- We will discuss on value of Damage threshold and revise the value.

Value of Damage threshold in standardization

Standard	Value	Unit	Memo
ITU-T Class B_{L}	1.0	dBm	100 Gbps OLT/ONU
100G Lambda MSA	-2.4	dBm	Without Filter
Our previous proposal	-1.4	dBm	
Our new proposal	-1.0	dBm	

100GBASE-BR40 Transmit characteristics

Description	100GBASE-BR40	Unit	
Signaling rate (Range)	$53.125 \pm 100 \mathrm{ppm}$	Gbd	
Modulation Format	PAM4	-	
100GBASE-BRx-D Center wavelength (Range)	1308.1 to 1310.1	nm	
100GBASE-BRx-U Center wavelength (Range)	1303.6 to 1305.6	nm	
Side-mode suppression ratio (SMSR), (min)	30	dB	
Average launch power (max)	+8.5	dBm	
Average launch powera (min) : informative	+2.7	dBm	
Outer Optical Modulation Amplitude ($\mathrm{OMA}_{\text {outer }}$) (max)	8.7	dBm	
```Outer Optical Modulation Amplitude (OMA outer) (min) b for TDECQ < 1.4 dB for 1.4 dB\leqqTDECQ \leqq 3.9 dB or TDECQ (max)```	$\begin{gathered} 5.7 \\ 4.3+\text { TDECQ } \end{gathered}$	dBm	
Transmitter and dispersion eye closure for PAM4 (TDECQ) (max)	3.9	dB	
TECQ (max)	3.9	dB	
\|TDECQ - TECQ	(max)	2.7	dB

## 100GBASE-BR40 Transmit characteristics(continued)

Description	100GBASE-BR40	Unit
Transmitter over/under -shoot (max)	22	$\%$
Transmitter power excursion (max)	4.4	dBm
Average launch power of OFF transmitter (max)	-15	dBm
Extinction ratio (min)	5.0	dB
Transmitter transition time (max)	17	ps
RINaMA (max)c $_{\text {Optical return loss tolerance (max) }}$ (max)	-136	$\mathrm{~dB} / \mathrm{Hz}$
Transmitter reflectance ${ }^{\text {(ma }}$ (mB		

a Average launch power $(\min )$ is not the principal indicator of signal strength. A transmitter with launch power below this value cannot be compliant; however, a value above this does not ensure compliance.
b The OMAouter ( min ) requirement holds even if the TDECQ $<1.4 \mathrm{~dB}$. Even though the representation of the OMAouter requirement is different from that in Clause 139, they are consistent.
c In RINxOMA, " $x$ " is the optical return loss tolerance (max) for the PHY under test.
d Transmitter reflectance is defined looking into the transmitter.
*1 5.4 dBm in 100G lambda MSA 100G-ER1-40.

## 100GBASE-BR40 Receive characteristics

Description	100GBASE-BR40	Unit
Signaling rate (Range)	$53.125 \pm 100 \mathrm{ppm}$	Gbd
Modulation Format	PAM4	-
100GBASE-BRx-D Center wavelength (Range)	1308.1 to 1310.1	nm
100GBASE-BRx-U Center wavelength (Range)	1303.6 to 1305.6	nm
Damage threshold ${ }^{\text {a }}$	-1.0	dBm
Average receive power (max)	-2.4	dBm
Average receive power ${ }^{\text {b }}$ (min)	-15.3	dBm
Receive power ( OMA $_{\text {outer }}$ ) (max)	-2.2	dBm
Receiver reflectance (max)	-26	dB
```Receiver sensitivity(OMA (outer)})=(max for TECQ < 1.4 dB for 1.4 dB \leqqTECQ \leqq 3.9 dB or TDECQ (max)```	$\begin{gathered} -12.8 \\ -14.2+\text { TECQ } \end{gathered}$	dBm
Stressed receiver sensitivity ($\left.\mathrm{OMA}_{\text {outer }}\right)^{\text {d }}$ (max)	-10.3	dBm
Conditions of stressed receiver sensitivity test:e		
Stressed eye closure for PAM4 (SECQ)	3.9	dB

a The receiver shall be able to tolerate, without damage, continuous exposure to an optical input signal having this average power level.
${ }^{b}$ Average receive power (min) is not the principal indicator of signal strength. A received power below this value cannot be compliant; however, a value above this does not ensure compliance
c Receiver sensitivity (OMAouter) (max) is optional and is defined for a transmitter with a value of SECQ up to 3 dB for 100GBASE-BR10 and 3.2 dB for 100GBASE-BR20, and 100GBASE-BR40.
${ }^{d}$ Measured with conformance test signal at TP3 (see 999.7) for the BER specified in 999.1.1
e These test conditions are for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

100GBASE-BR40 illustrative link power budgets

Description	100GBASE-BR40	Unit
Power budget (for maximum TDECQ)	22.4	dB
Operating distance	40	km
Channel insertion loss	18^{a}	dB
Maximum discrete reflectance	-35	dB
Allocation for penalties ${ }^{\text {b }}$ (for maximum TDECQ)	4.4	dB

a The channel insertion loss is calculated using the maximum distance specified in Table 999-5 for 100GBASE-BR10 and 100GBASE-BR40 and fiber attenuation of $0.4 \mathrm{~dB} / \mathrm{km}$ plus an allocation for connection and splice loss given in 999.10.2.1.
${ }^{b}$ Link penalties are used for link budget calculations. They are not requirements and are not meant to be tested.

100GBASE-BR40 Fiber optic cabling (channel) characteristics

Description	100GBASE-BR40	Unit
Operating distance (max)	40	km
Channel insertion loss ${ }^{\text {a,b }}$ (max)	18	dB
Channel insertion loss (min)	10	dB
Positive dispersion ${ }^{\text {b }}$ (max)	37	ps/nm
Negative dispersion ${ }^{\text {b }}$ (min)	-77	ps/nm
DGD_max ${ }^{\text {c }}$	4.9	ps
Optical return loss (min)	22	dB

a These channel insertion loss values include cable, connectors, and splices.
${ }^{\text {b }}$ Over the wavelength range 1303.6 nm to 1310.1 nm .
c Differential Group Delay (DGD) is the time difference at reception between the fractions of a pulse that were transmitted in the two principal states of polarization of an optical signal. DGD_max is the maximum differential group delay that the system is required to tolerate

100GBASE-BR40 Fiber optic cabling (channel) characteristics(Continued)

Reference

PMD type	Dispersion $^{\mathbf{a}}(\mathbf{p s} / \mathbf{n m})$		Insertion loss $^{\mathbf{b}}$	Optical return loss $^{\mathbf{c}}$	Max Mean DGD
	Minimum	Maximum		15.6	5
100GBASE-BR10	$0.23 \times \lambda \times\left[1-(1324 / \lambda)^{4}\right]$	$0.23 \times \lambda \times\left[1-(1300 / \lambda)^{4}\right]$	Min		
100GBASE-BR20	$0.46 \times \lambda \times\left[1-(1324 / \lambda)^{4}\right]$	$0.46 \times \lambda \times\left[1-(1300 / \lambda)^{4}\right]$	Minimum	TBD	TBD
100GBASE-BR40	$0.92 \times \lambda \times\left[1-(1324 / \lambda)^{4}\right]$	$0.92 \times \lambda \times\left[1-(1300 / \lambda)^{4}\right]$	Minimum	TBD	TBD

Thank You!

