Timing Recovery Considerations for Differential Manchester Encoded (DME) ACT Upstream Channel

Jay Cordaro, Analog Devices <jay.cordaro@analog.com>

IEEE 802.3 dm Plenary 10 November 2025

Version 1.1 Page 1

Agenda

Motivation

Background

DME Overview

Timing Recovery Methods

Bang Bang PD with NRZ

ACT DME System Conditions

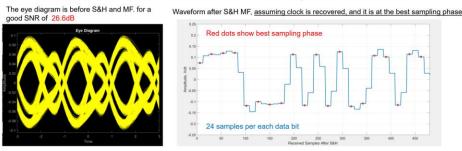
DME Received Waveform

DME Quantized ZCD

Discussion

Sample Implementation

Summary

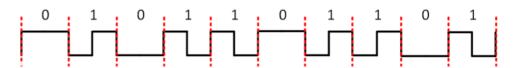

Why DME Timing Recovery Matters

- There has been some confusion on timing recovery with Differential Manchester Encoded (DME) data
- DME or Bi-Phase Encoding has been used in numerous digital communications systems including:
 - IEEE 802.3 Clause 98
 - IEEE 802.3 Clause 147
 - 802.5 (Token Ring)
 - AES3
 - SMPTE 12M (with the moniker 'Biphase Mark Code')
- This presentation will show robust low-complexity joint data reception and timing recovery for the DME upstream channel for the technology with the moniker 'ACT' is feasible without an equalizer

Background

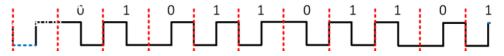
- A. Chini and M. Tazebay's DME presentation [1] raised concerns about:
 - data dependent jitter (DJ)
 - extracting phase with the DME signal without an equalizer or preamble
 - Phase ambiguity/CDR Delay (?) "What if crystal" less [sic] camera clock shifts to the next symbol?"
- While there is DJ, it is not an issue
 - Due to the characteristics of DME an equalizer for any ACT channel for proper reception of symbols and timing recovery
- ACT-DME phase can be extracted and tracked with a comparator receiver without an equalizer or preamble

ACT-DME, Before and After S&H MF, Upstream Receiver



- Note the signal distortion and the data dependent jitter in the eye diagram.
- The best sampling phase shown is obtained with manual phase search. The distorted and jittery waveforms before MF mus be used to extract the sampling clock phase.
- · How well is the clock sampling phase extracted from the distorted received signal? (not a burst with a preamble)
- The Clock frequency tracking circuit, given large jitter before MF? Does it reach 1ps downstream clock accuracy?
- · What if crystal less camera clock shifts to the next symbol? (wrong Manchester phase does not happen in FDD or

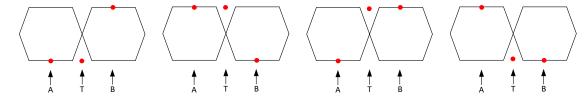
Version 1.1


Differential Manchester Encoding (DME) Overview

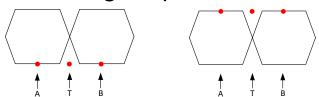
- Differential Manchester Encoding (DME) has been proposed for ACT+GMSLE low speed upstream direction.
 - Robust and used for 802.3 Clause 98, Clause 146, etc.
 - Encoding rule:
 - 0: {1 1 } {-1 -1}
 - 1: {1 -1} {-1 1} (transition mid symbol)
 - Transition at symbol boundary (self-clocking)
 - Note that unlike NRZ, the maximum run length of symbols without a transition is '1' because there is always a transition at a symbol boundary

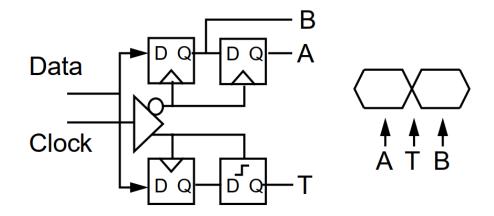
Differential Detection

 Instead of symbol-by-symbol detection, shift detection interval by ½ symbol period and differentially detect vs. previous symbol [2]

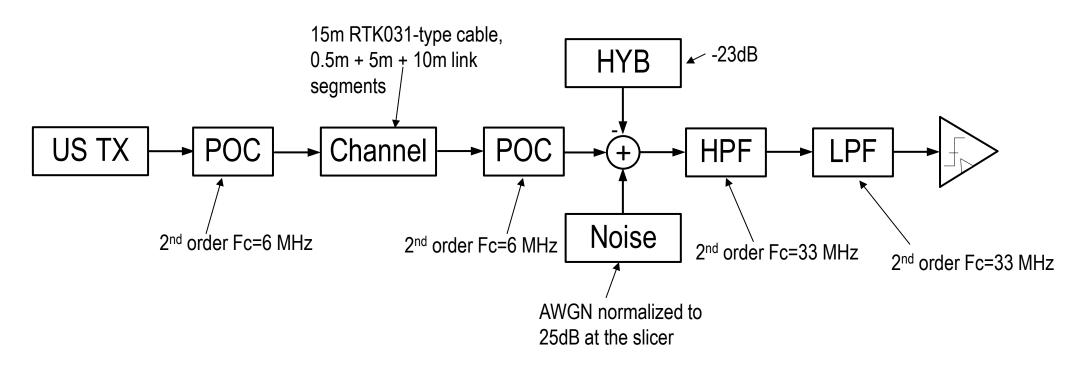

- If current symbol is in phase with previous symbol, detect '1'. If out of phase with previous symbol, detect zero.
- Phase ambiguity exists
 - Differential detection rule also works (with less signal margin) with normal offset (1/2 symbol period from differential)
- Differential detection symbol distance improves resistance to droop and resistance to noise.
 Refer to [2] & [3] for more information

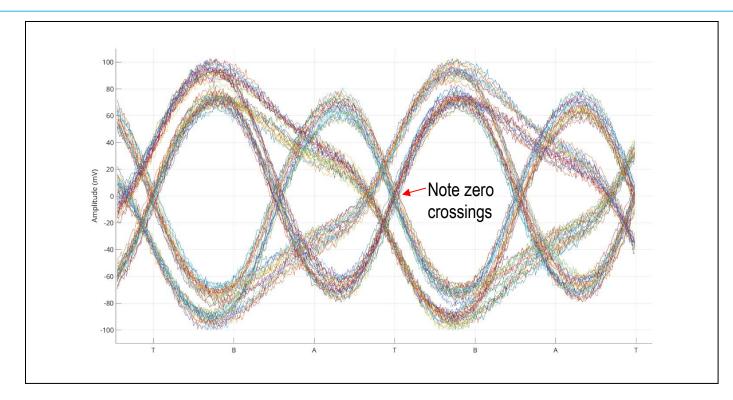
Timing Recovery Methods


- Timing recovery methods include: [4, p.638]
 - Preamble correlation
 - Golay Sequence in Clause 98 is an example
 - Transition or Zero Crossing Methods
 - Gardner Timing Recovery
 - Quantized Zero Crossing Detection (QZCD) (so-called 'Bang Bang' Phase Detector)
 - Maximum Likelihood (ML) approximations
 - Early/Late Matched Filter correlation
 - harris Band Edge
 - Minimum variance methods
- The conceptual timing recovery shown in this presentation is one possible implementation of QZCD for DME


Quantized Zero Crossing (Bang Bang) with NRZ

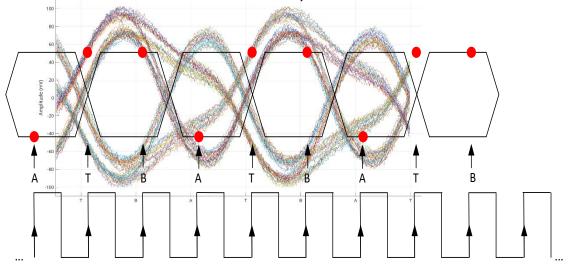
- The Alexander [5] phase detector is shown at right from Rick Walker's presentation [6].
- The data is 2x oversampled at ½ UI intervals. If transition, depending on value of 'T' give a coarse action of 'early' or 'late' to the PI filter which controls the VCO.

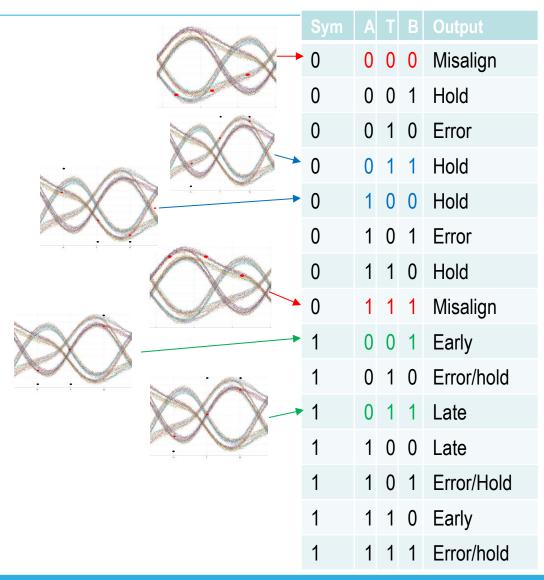

 Note that if there are long strings of ones or zeros, which will occur without a line coding with guaranteed transitions, a 'hold' signal to the VCO is required when there are long sequences of no transitions


St	A	Т	В	UP	DWN	Action
0	0	0	0	0	0	Hold
1	0	0	1	0	1	Early
2	0	1	0	1	1	Hold/Err
3	0	1	1	1	0	Late
4	1	0	0	1	0	Late
5	1	0	1	1	1	Hold/Err
6	1	1	0	0	1	Early
7	1	1	1	0	0	Hold

DME System Conditions

- The system conditions are shown, above
- Represent expected values for ACT
- Exact values are not critical for the operation of the CDR


DME Received Waveform


- Differentiall decoded '1' shows clean zero crossing in middle of UI
- Differentially decoded '0' shows significant zero crossing distortion (DJ)

DME Quantized Zero Crossing Detection

From the Alexander PD, a DME PD can be derived

- Sample at 1/3 UI intervals (3x OSR)
 - Timing decision and symbol detection from 3 samples
 - 1.5x OSR is also possible, but not shown
- Pattern match to filter which transitions are used to update control loop to remove DJ from timing decisions
 - Differential symbol == '1', update
 - Differential symbol == '0', hold
- Pattern match to filter the absence of transitions in a UI to detect and correct for ½ symbol period offset

Summary

- A conceptual implementation of a particular quantized zerocrossing phase detector for DME for the ACT channel was introduced
- This implementation is low complexity, requiring only 4 flip-flops and is not affected by ACT channel data dependent jitter
- The conceptual implementation extracts the phase of the received DME symbols without an equalizer or preamble
- Phase ambiguity present in decoding DME is detected and resolved
- This is only one conceptual implementation; it may be further optimized by an implementer, or a different implementation or timing recovery method may be used
- DME is a robust self-clocking modulation technique and can be used for ACT Upstream channel without an equalizer or a preamble

References

- [1] "DME Receiver Performance and EMC Comparison for ACT versus TDD" A. Chini, M. Tazebay DME Receiver Performance and EMC Comparison for ACT versus TDD
- [2] "Proposed Preamble: Synchronization and Harness Defect Detection" J. Cordaro, pp 19-21 https://www.ieee802.org/3/cg/public/adhoc/cordaro_3cg_06_0418.pdf
- [3] "IEEE 802.3da RX Model Proposal" P. Beruto https://www.ieee802.org/3/da/public/0722/beruto_3da_20220711_rx_model.pdf
- [4] B. Sklar and f. harris, "Digital Communications", 3rd ed. Upper Saddle River, NJ, USA: Pearson, p. 637, 2021.
- [5] Alexander, "Clock recovery from random binary signals," Electronics Letters, vol. 11, no. 22, pp. 541–542, October 1975
- [6] Walker, R. C.: Designing Bang-Bang PLLs for Clock and Data Recovery in Serial Data Transmission Systems, "Phase-Locking in High-Performance Systems", edited by: Razavi, B., IEEE Press, Wiley-Interscience, pp. 34–45, 2003