

A Brief Tutorial on Power Management in Computer Systems

David Chalupsky, Emily Qi, & Ilango Ganga Intel Corporation March 13, 2007

Objective & Agenda

Objective:

 Establish a common foundation for EEESG work by providing an overview and history of PC power management and LAN use in that context.

Agenda:

- High Level overview of PC power management
 - Links to additional information
- How Ethernet is utilized in Contemporary PC Power Management
- Making Power Management and Ethernet more effective in the future

PC Power States circa 1990

ONOFF

Sounds nice & simple. What's wrong with that?

- Time to boot the PC from a cold start took too long, and got longer as PCs became more complex.
- As a result, people left their PCs on **all the time**, wasting energy.

3

Historical (1990's) Motivation for Power Management by market segment

Laptops & Battery Powered Devices

- Battery Life is a key product feature, thus
- Commercial incentive has always been there
- Vendor-specific solutions *preceded* standards

Desktop PCs

- Little end user benefit perceived for PM.
- Initial attention to PM in 1992 with the release of EPA's Energy Star program and international counterparts.

Server Systems

- Historically, a very performance oriented segment
- Always on & ready for maximum performance
- Recent, market-driven, attention to power due to high cost of electricity & cooling in Data Centers
- EPA just beginning to focus on Servers in 2006/2007

Enter the Sleep State – 1990's

To reduce PC energy consumption during periods of inactivity, the industry introduced the concept sleep, or standby, states.

Goals

- Power consumption at near Off levels
- Quick recovery to active state

Waking the System

- Return to active state based upon user input
- Keyboard, Mouse, Power Button

Enter Wake On LAN

In corporate environments, PCs were STILL being left on all night.

- Systems backups, remote management and upgrades performed at night, over the LAN.
 - IT needed system availability.
- Wake On LAN (WOL) allowed system to sleep at night and be turned on remotely for management.
- First products appeared ~1996.

Power Management Standards

For multi-vendor interoperability, standards were required

- Initial effort: APM
 - Advanced Power Management
 - Early-mid 1990's
- Current: ACPI
 - Advanced Configuration and Power Interface
 - 1996 present
 - ACPI is still evolving to comprehend new system capabilities
 - Coordinated with supporting interface specifications:
 - PCI Power Management, USB, Cardbus, PCI Express, etc.
 - Coordinated with supporting **Device Class** specifications:
 - Network, Storage, Graphics, etc.

Advanced Power Management (APM) The Legacy Method

- <u>BIOS-based</u> system power management
 - Operating System has no knowledge of what APM does
- Provides CPU and device power management
- Invoked when idle provides CPU power mgt.
- Uses device activity timeouts to determine when to transition devices into low power states
- Each system board vendor must refine and maintain APM BIOS code/IP
- Wide variety of implementations and functionality
 - No uniform user experience
- Primitive Wake On LAN support

ACPI

Advanced Configuration and Power Interface

An "interface" specification

Allows OS-directed Power Management (OSPM)

- ACPI/OSPM replaces APM, MPS, and PnP BIOS Spec
- PM awareness is **global** in the system, not hidden like in APM.

Defines

- Hardware registers implemented in chipset silicon
- BIOS interfaces
 - Configuration tables
 - Interpreted executable function interface (Control Methods)
 - Motherboard device enumeration and configuration
- System and device power states
- ACPI Thermal Model
- Still evolving with system capability

System Hierarchy of Power Management under ACPI

- Power Management states and required functionality are defined for multiple levels of the system
 - Global view: Gx states
 - System: Sx states
 - Processor: Cx states
 - PCI / PCI-X Bus: Bx states
 - PCI Express Links: Lx states
 - Devices: Dx states
- General Trend of the state numbers
 - **0** is the Active state G0, S0, D0
 - System is <u>available</u> to User
 - 1-n are sleep states
 - higher number corresponds to lower power.
 - User perception is <u>OFF</u> for all of these sleep states.

In the Interest of Time...

• More detailed descriptions of these power states are in the Backup section for the interested student.

Hardware Ingredients Required for Wake On LAN

- PCI Power Management Provides
 - An Auxiliary Power Supply -
 - 3.3VAux power available during Sleep when main power is off
 - Mechanism for Signaling Wake Event to System
 - PME# or Wake# Signal
 - Control & Status Registers
 - Device D-State Definition
- Network Device Class Specification Provides
 - Definition of Wake Up Packet Types and filters
 - Required behavior in the different power states.

Example Transition from Working To Sleep State with Wake On LAN

State	G, S, D States	Action	Power
Active	G0, S0, D0	Normal Functionality	Main=On Aux=on
Prepare for Sleep	G0, S0, D0->D3	OS loads wake up packet filter into LAN controller via Driver, sets Device Power State D3	Main=On Aux=on
Transition to Sleep	D3, S0-> S3 or S4 G0-> G1	OS saves system state (memory image) to RAM or Disk. Main power off.	Main->off Aux=on
Wake Event	D3-> D0 S3/4-> S0 G1-> G0	Wake packet received. Device asserts PME# or Wake#	Main=On Aux=on

Contemporary Use of LAN in Power Management

Though not standards-driven, these are common features provided by multiple vendors.

Disable LAN while System Active – Powering down the device when there's no need to maintain the network connection. OS may place the device in D3 if no link indicated, setting a "wake on link status change" wake filter. Vendor-specific HW disable mechanisms for more "permanent" disable (BIOS setup).

Use Lower Speed for Wake on LAN – Upon transition to D3 state, if Gbit link currently established, Restart AutoNeg with only 10M or 10/100 advertised.

Low Speed for Battery – When laptop running on battery power, favor lower speed, i.e. Lowest Common Denominator, with Link Partner.

Smart Power Down / **Energy Detect** – When no receive signal detected, MAC/PHY mostly shut off except for receive energy detect circuit. Power is reduced significantly. From time to time link setup is attempted to avoid a deadlock condition where both Link partners support this feature.

Deep Smart Power Down – Similar to smart power down mode, but power supplies are also shut down.

The Common Attribute of Contemporary Mechanisms

High Latency

Time required for link speed change or device enable/disable is very high.

Thus link manipulation for power savings is only used when the latency doesn't matter

- Transition to Sleep
- LAN Disable
- Cable Disconnect

The Rapid PHY Selection feature of Energy Efficient Ethernet will provide the tools for Active State Power Management of the LAN Link

Active State Power Management

PCI Express introduces Active State Power Management (ASPM)

- For PCIe Links

Previous mechanisms focused on Sleep States (G1/S3-4/D3).

ASPM allows for power optimization when the system is still active and functional (G0/S0/D0 states)

PCIe Devices / Links can

- Go to electrical Idle autonomously, without software control (LOs)
- Renegotiate Link Width Quickly
 - Dropping from x8 to x1 can save 100mW+ per lane.
- Renegotiate Link Speed quickly
 - Move between Gen1 & Gen2 (2.5G & 5.0G) rates

Summary

Power Management in Computer Systems continues to evolve

<u>Sleep</u> State definition has been the focus

 RPS will provide greater functionality, faster transitions in & out of Sleep, enabling wider adoption of power-friendly behaviors as computers are adapted to new applications.

Active State Power Management is a newer field.

- Low latency transition capability between power/performance levels is **key**.

Customers, Manufacturers, and Regulatory agencies are focused on Power Efficiency, particularly in system Idle conditions.

Energy Efficient Ethernet will provide a necessary toolkit.

It WILL be used.

References

ACPI

<u>http://www.acpi.info/</u>

PCI, PCI Express, PCI Power Management

http://www.pcisig.com/home

Network Device Class Specification

- http://www.microsoft.com/whdc/resources/respec/specs/pmref/PMnetwork.mspx
- EPA Enterprise Server and Data Center Energy Efficiency Initiatives
 - <u>http://www.energystar.gov/index.cfm?c=products.pr_servers_datacenters</u>
- 1 Watt Executive Order
 - <u>http://www.whitehouse.gov/news/releases/2001/07/20010731-10.html</u>

Global System State Definitions

G States reflect the User's perception of the machine.

GO Working (SO)

- A computer state where the system fully operational.
- It is not safe to disassemble the machine in this state.

G1 Sleeping (S1-S4)

- Power consumption is small and the system "appears" to be off.
- Work can be resumed without rebooting the OS.
- Large elements of system context are saved by the hardware and the rest by system software.

G2 Soft Off (S5)

- The computer consumes a minimal amount of power.
- This state requires a large latency in order to return the Working state.
- The system's context will not be saved. The system must be restarted.

G3 Mechanical Off

- This state that is entered by a mechanical means (i.e. power switch).
- The OS must be restarted and no hardware context is retained.
- Except for the real-time clock, power consumption is zero.

System State (Sx) Definitions

SO Working State

- Fully powered and operational.
- S1/S2 Sleep States (not generally used)
 - Low wake latency and no system context is lost.
 - S2 is the same as S1 except CPU and cache context is lost.
- S3 Sleep State (also known as <u>Suspend to RAM</u>)
 - The S3 sleep state is a low wake latency sleep state
 - Memory image maintained and powered. CPU, chipset, I/O devices lose context.
- S4 Sleep State (also known as Suspend to Disk, or Hibernate)
 - Longest wake latency sleeping state, all devices are powered off.
 - Platform context is maintained in the hibernate file on the Hard Drive.

S5 Soft Off State

- S5 is similar to the S4 state except that the OS does not save any context.
- The system is in the "soft" off state and requires a complete boot when it wakes.

Device Power States

D0 (Fully on):

- The device is completely active and responsive.
- The link may be in either LO/LOs.
- L1 state may be achieved either by hardware-based ASPM or by requesting the link to enter L1.

D1 and D2: (rarely used)

- No universal definition for these intermediate D-states.
- D1 is expected to save less power but preserve more device context than D2.
- L1 state is the required link power state in both of these D-states.

Device Power States (cont.)

D3 (Off):

- *D3*_{hot}
 - Primary power is not yet removed from the device.
 - D3_{hot} maps to L1 to support clock removal on mobile platforms. PCI Bus clock is running.
- D3_{cold}
 - Primary power may be fully removed from the device.
 - D3_{cold} maps to L2 if auxiliary power is supported or,
 - L3 if no power is delivered to the device. PCI Bus clock is stopped.

Processor Power State Definitions

CO Processor Power State

• While the processor is in this state, it executes instructions.

C1 Processor Power State

- This power state has the lowest latency.
- The processor in a non-executing power state.
- Platform scales the CPU clock frequency.

C2 Processor Power State

- This state offers improved power savings over the C1 state.
- The processor in a non-executing power state.
- Platform scales the CPU clock frequency and voltage.

C3 Processor Power State

- The C3 state offers improved power savings over the C1 and C2 states
- Processor's caches maintain state but ignore any snoops.

PCI Express Link Power States

LO – Fully Active

- LOs Electrical Idle (Autonomous)
- Low exit latency (<1 µs).
- Reduces power during short intervals of idle.
- Devices must transition to LOs independently on each direction of the link.
- L1 Electrical Idle (Directed from higher layer)
- Lower exit latency (~2 4 µs).
- Reduces power when the device becomes aware of a lack of outstanding requests or pending transactions.
- The power-saving opportunities include, but are not limited to:
 - Shutdown of almost all the transceiver circuitry.
 - Clock gating of most PCI Express architecture logic.
 - Shutdown of the PLL.

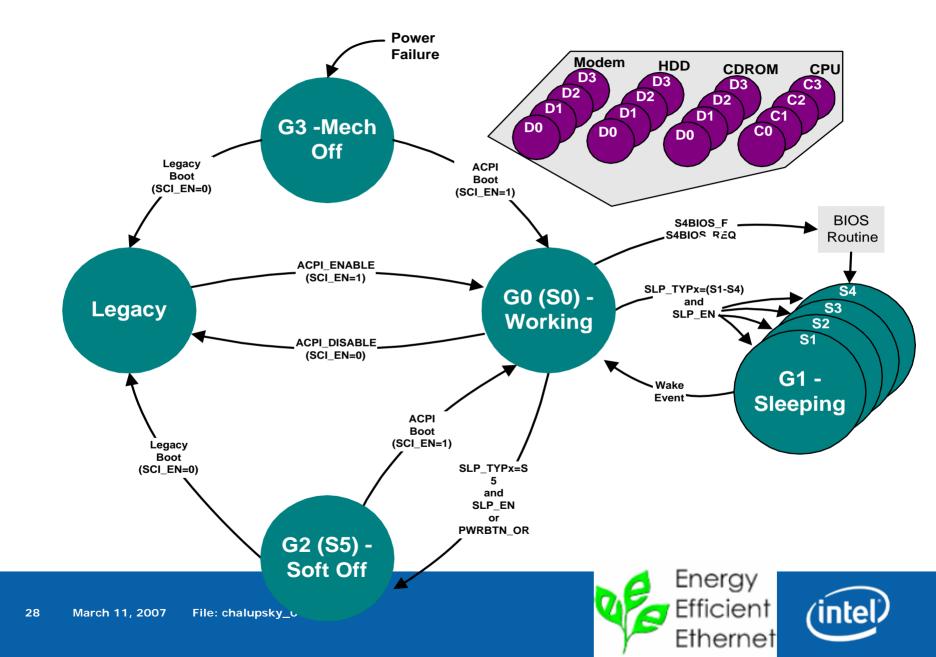
PCI Express Link Power States (cont.)

L2/L3 Ready

- Prepares the PCI Express link for the removal of power and clock.
- The device is in the D3hot state and is preparing to enter D3cold.
- L2
- This link state is intended to comprehend D3cold with Aux power support.
- WAKE# signal used for wake-capable devices to exit this state.

L3 (link off)

- Power and clock are removed in this link state.
- No Aux power available.
- To exit this state, the platform must go through a boot sequence where power, clock, and reset are reapplied.



Mapping D-states to L-states

Downstream Component D-state	Permissible Upstream component D-state	Permissible L-state
DO	DO	L0, L0s, L1
D1	D0-D1	L1
D2	D0-D2	L1
D3hot	D0-D3hot	L1
D3cold	D0-D3cold	L2 or L3

ACPI Global States and Transitions

