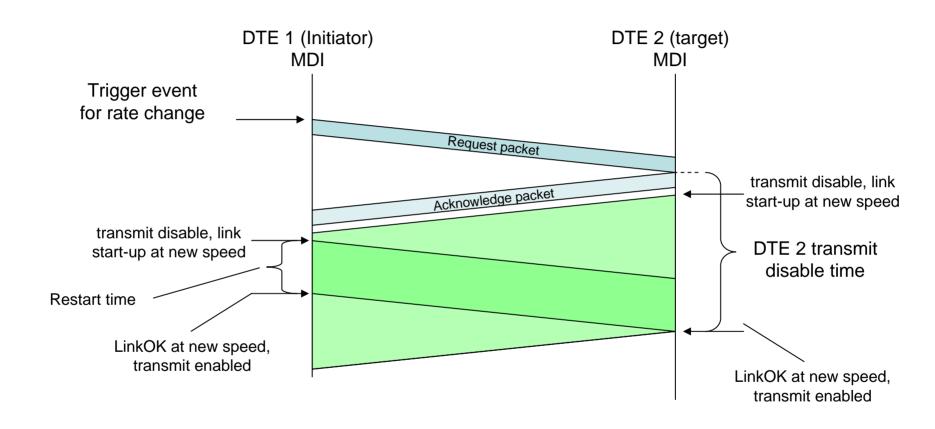


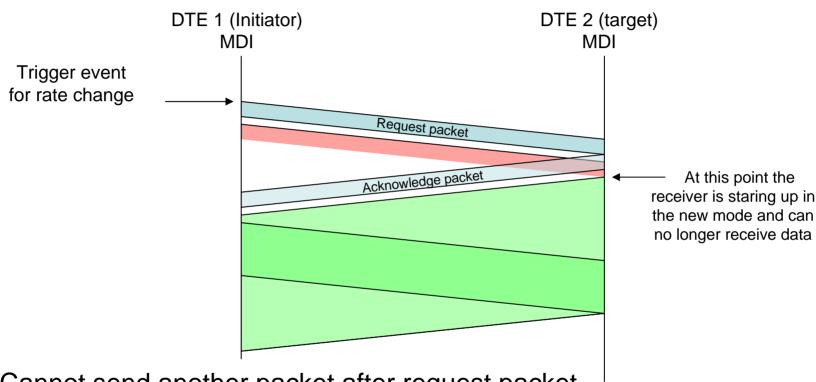
Transmit disable time in a packet based speed change protocol Impact on objectives

David Law 3Com

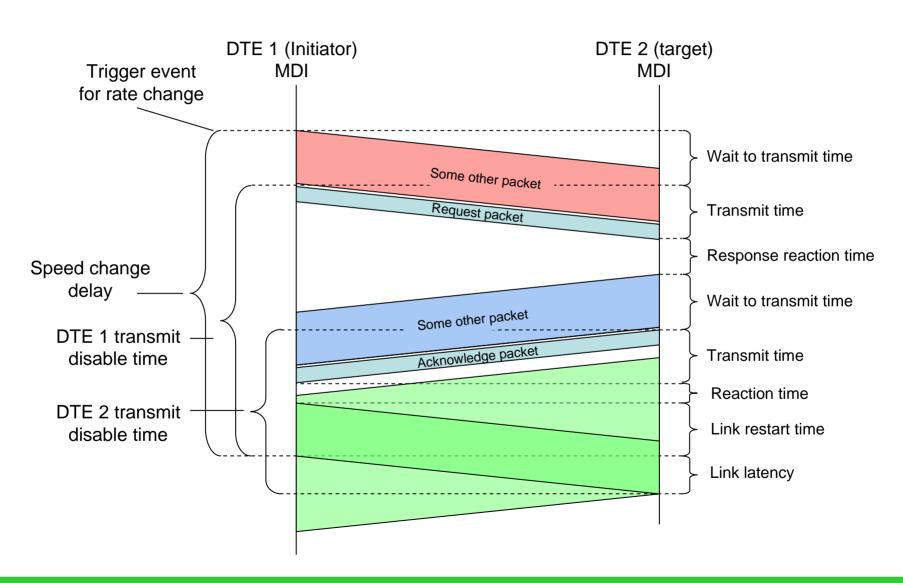
David_Law@3Com.com


Link disable time – model so far

Notes:


1 - Ignores error recovery such as Acknowledge packet being lost

Link disable time – more detail


What is transmit disable time for DTE 1?

Link disable time

- Cannot send another packet after request packet
 - Soon after receiving Request packet the receiver will drop link to start new mode
- DTE 1 additional delay
 - Trigger event may be just after transmission starts of maximum length packet
- DTE 2 additional delay
 - Request packet may arrive just after transmission starts of maximum length packet

Transmit disable calculation

Example calculation – worst case

Parameter	Calculation	Bits	10Mb/s	b/s 100Mb		/s 1Gb/s		10Gb	/s
			us	us		u	s	us	
Wait to transmit time Note 1	(Max Packet + IPG) x 8 x BT	16160	1616	,	161.6	16	6.16	1.6	16
Transmit time Note 2	Min Packet x 8 x BT + link delay	576	58.17		6.33	1.146		0.6	27
Response reaction time	Same as required for pause	Note 3	57.6		5.76	1.	024	3.072	
Wait to transmit time	(Max Packet + IPG) x 8 x BT	16160	1616	,	161.6		5.16	1.616	
Transmit time	Min Packet x 8 x BT + link delay	576	58.17		6.33	1.	146	0.6	27
Reaction time Note 4	(Same as required for pause)/2	Note 3	28.8	2.88		0.512		1.5	36
Link restart time	Link speed increase	Note 5	2500	2500		1000		r	n/a
	Link speed decrease	Note 5	n/a	1		2500		25	00
Totals for link speed increase				2		1	J	1	
Speed change delay during link speed increase			599	34.7 284		44.5	1036.0		
DTE 1 (initiator) transmit disable time during link speed increase			43	18.7 268		32.9	1020.0		
DTE 2 (target) transmit disable time during link speed increase			25	37.6 2509.		09.8	1002.2		

Notes:

- 1 Maximum packet size = Envelope frame + SFD + Preamble = 2008 Bytes
- 2 Minimum packet size = Minimum frame + SFD + preamble = 72 Bytes; Link delay = 5.7ns/meter x 100 = 0.57 us
- For operating speeds of 100 Mb/s or less response time = pause_quantum + 64 = 512 + 64 = 576 Bits For an operating speeds of 1000 Mb/s response time = two pause_quantum = $2 \times 512 = 1024$ Bits For an operating speeds of 10 Gb/s response time = sixty pause_quantum = $60 \times 512 = 30,720$ Bits
- This delay could be included in link restart time but some delay has to be allocated for PHY latency and packet processing that is discrete from PHY restart
- Based on data in chadha_1_0407.pdf, suggestion EEE 1000BASE-T mode in woodruff_01_0307.pdf and nominal value for 10BASE-T of 1us.

Some observations

- Transmit disable time on single link can be a number of milliseconds
 - Is this acceptable for upper layer protocols
- Transmit disable time asymmetric
 - Longer for the requesting end
- Transmit disable time packet size dependant at slower speeds
 - Average time will be less than maximum
- Transmit disable time PHY restart dependant at higher speeds
 - Average time very similar to maximum
- Assuming EEE 10BASE-T is lowest power by significant margin
 - 10/100/1000BASE-T ports will have broad market potential
 - 1000BASE-T to provide best performance for cost
 - EEE 10BASE-T to provide lowest power operation
- Hence 10BASE-T to 1000BASE-T speed change will be important
 - 10BASE-T to 1000BASE-T via 100BASE-T
 - 10BASE-T to 100BASE-T
 - 6 ms maximum, 3ms min
 - 100BASE-T to 1000BASE-T
 - 2.5 ms minimum (no packets other than request to increase to 1000BASE-T)
 - Total 8.5ms maximum, 5.5ms minimum
 - 10BASE-T to 1000BASE-T direct
 - 6 ms maximum, 3ms min

Thoughts on objectives

- Add objective to allow multi-decade change
 - Increase more important that decrease
 - At minimum from 10BASE-T to 1000BASE-T
- And while we are considering that ..
 - Add objective to support full duplex only
 - Have we really not stated that already?