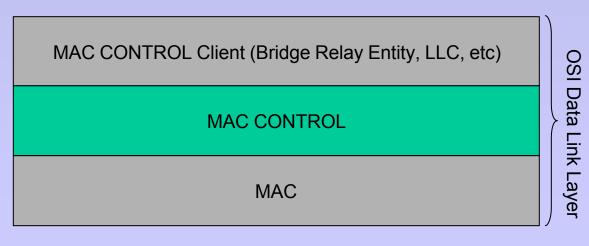
MPCP General Description

MPCP

The Multi-Point Control Protocol (MPCP)
specifies a control mechanism between a Master
unit and Slaves units connected through a Point to-Multi-Point (P2MP) segment to allow efficient
transmission of data


- Functions performed are:

- Controlled network boot process
- Ranging
- Bandwidth assignment to end-stations
- Bandwidth polling from end-stations

MAC Control

- MPCP is implemented in MAC Control layer
- Clause 31: "MAC Control provides for real-time control and manipulation of MAC sublayer operation"

HIGHER LAYERS

PHYSICAL LAYER

MAC Control

- New control messages are introduced:
 - assign and request bandwidth:
 - GATE
 - REPORT
 - control the boot process:
 - REGISTER REQ
 - REGISTER
 - REGISTER_ACK

Considerations for Optimization

- MPCP provides 'hooks' for network resource optimization:
 - Ranging is performed to determine ONU distance, and reduce slack
 - Reporting of bandwidth requirements by ONUs for dynamic bandwidth allocation (DBA)
 - Optical parameters are negotiated to optimize performance
 - Others TBD...

Scalability & Extensibility

- Fast granting cycles possible
- Dynamic granting capability allows fast bandwidth assignment
- Protocol has ability to add future fields
- Vendor-specific enhancements possible without compromising interoperability
- Split ratio and reach not limited by MPCP

Details in separate presentations...

- Layering
- Timing Model
- Message Formats
- ONU Auto-Discovery
 - Also includes P2PE initialization

P2MP Motion: MPCP General

P2MP Track Motion:

Use proposal <maislos_1_0312.pdf> as a basis for the first P2MP draft.

Motion: Vincent Bemmel

Second: Onn Haran

Y: 41

N: 0

A: __3

P2MP Chair Note: proposal was modified from posted maislos_1_0302.pdf. Revised presentation maislos_1_0312.pdf posted on EFM reflector.