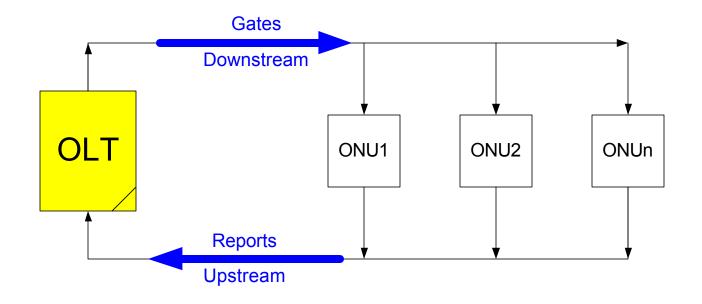
MPCP Baseline Proposal Architecture and Layering Model

Glenn Algie Vicent Bemmel Richard Brand Bob Gaglianello Ajay Gummalla Onn Haran Ryan Hirth David Horne

1

Lior Khermosh Hiroshi Suzuki John Limb Ariel Maislos Dolors Sala Jian Song Osamu Yoshihara

Overview


Protocol Overview

Layering Model

- External Interface
- Internal Layering and Interface
 - ONU Arbitration
 - Laser Control
 - Multiplexing Function

□ Summary

PON System Operation

ONU Operation

1. ONU synchronization

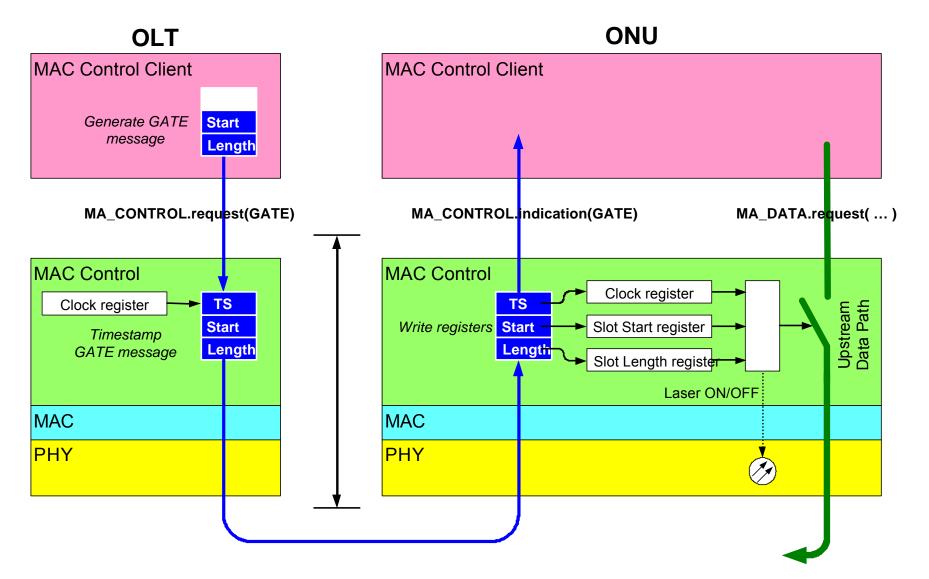
- ONU synchronizes to OLT timing through timestamps on the downstream MAC-control frames
- 2. ONU waits for discovery gate
- 3. ONU performs discovery process which includes
 - Ranging
 - Assignment of PHY_IDs
 - Assignment of bandwidth for the ONU to operate
 - This bandwidth must be large enough to at least be able to manage the ONU, and for the ONU to request more bandwidth when needed

4. ONU waits for its grants

- ONU transmits frames in these grants
- Request for additional bandwidth can be sent in report frames

*Timing and ranging and ONU discovery mechanisms described in separate presentations

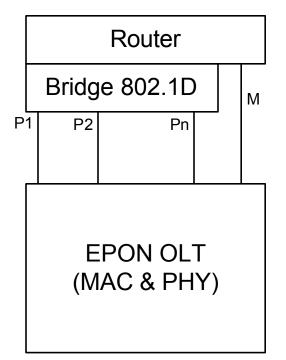
OLT Operation


Generates time stamped messages to be used as global time reference

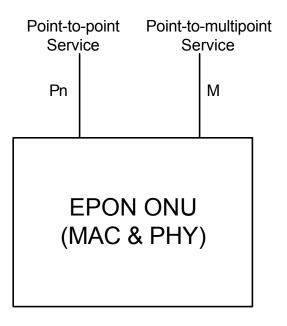
- □ Assigns bandwidth (MPCP allocation)
 - Generates discovery windows for new ONUs
 - Assigns individual grant windows to registered ONUs
- □ Performs ranging operation
- **Controls ONU registration process**

Protocol Highlights

- □ Collisions can occur only during discovery
- The OLT must guarantee a minimum amount of bandwidth to each registered ONU
- Mechanism to support flexible assignment of bandwidth


General Layering Overview

802.3ah P2MP Track


External Interface

OLT

Pi: Point-to-point link to ONUi M: Point-to-multipoint link

External Interface: Details

□ Compliance is achieved with P2P emulation

 Defines a virtual P2P link between ONU and OLT. Each individual virtual link interfaces separately to the bridge.

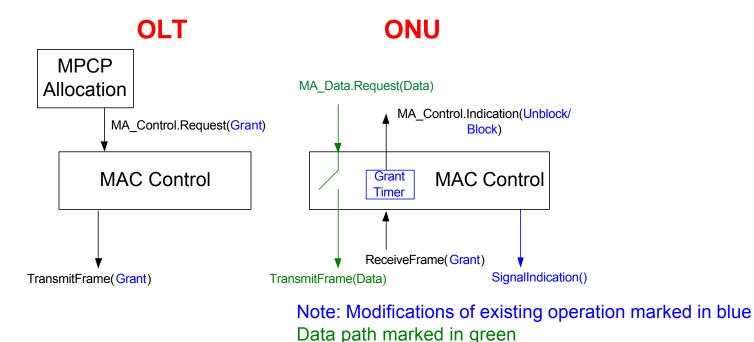
□ Single copy broadcast is achieved with a special port

- This port supports a "native" mode of operation with a pointto-point upstream and a point-to-multipoint downstream
- This port cannot be attached to a bridge because it is not compliant with 802.1 (requires special routing capabilities)

□ Shared emulation is not specified

- No need to specify how to reflect frames from upstream to downstream
- Multiplexing function is used to map these interfaces to a single PHY
- □ Clean architecture for start process
 - Autodiscovery can start in "native" mode and establish additional vMACs for P2PE during registration

Internal Layering Specification


ONU Arbitration
Multiplexing Function
ONU Laser Control

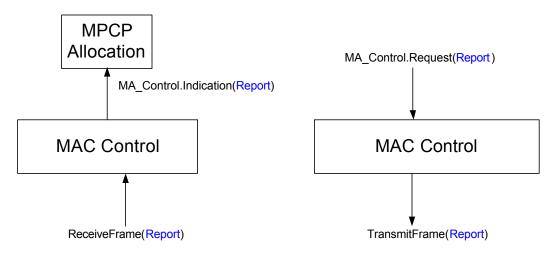
ONU Arbitration in MAC-control

Defined in MAC-control layer as it requires real time control

- Operates with standard MAC-control interface but new messages are required
- **Control layering assumes traditional Ethernet layering**
 - MAC-control entity connects to a single MAC entity
 - MAC-control entity can connect to several MAC-clients
- □ MPCP allocation is performed by a centralized scheduler
 - Scheduler transmits and receives control frames using MACcontrol primitives
 - Scheduler behavior is considered out of scope
- □ Gate and report messages are defined for arbitration

Grant Operation

- Grant gates MAC-client delivery of frames.
- Grant operates exactly like PAUSE mechanism (generated in client and interpreted in MAC-control with indication of client at timeout time)
- ONU transmits only during the time indicated in the grant
- ONU MAC-control enables Phy transmission at the start of a grant duration and disables it at the end of the grant duration


802.3ah P2MP Track

12

Report Operation

OLT

ONU

Note: Modifications of existing operation marked in blue

□ Reports are used to send ONU state to OLT

- Timestamps for synchronization and ranging
- Requests for additional bandwidth

ONU Synchronization

- □ Time stamps are added to MAC-control frames
- Specification must guarantee bounded jitter across MAC and lower layer
 - Any jitter is accounted for in the guard band

ONU Laser Control

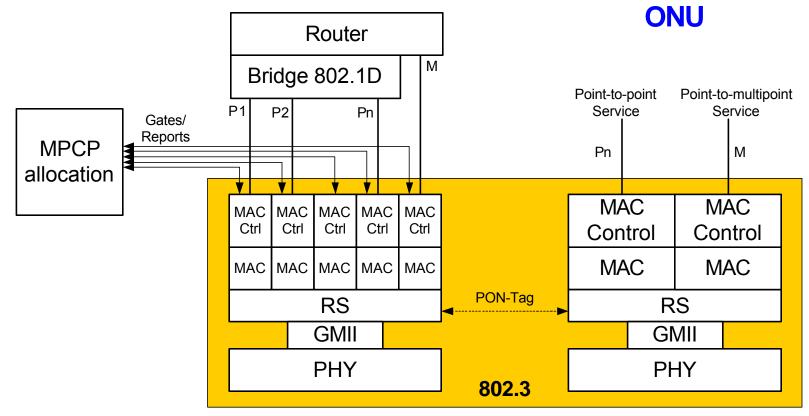
MAC-control indicates PHY when to turn on/off laser

- Need to provide a real-time unidirectional signal from MAC-control to PHY
 - It is a simple one-way indication to change state
- Signal provided through a direct side path from MAC-control to PHY
 - MAC-control generates (or writes) the signal
 - PHY receives (or reads) the signal

□ Details of signal specification to be worked out

Multiplexing Function

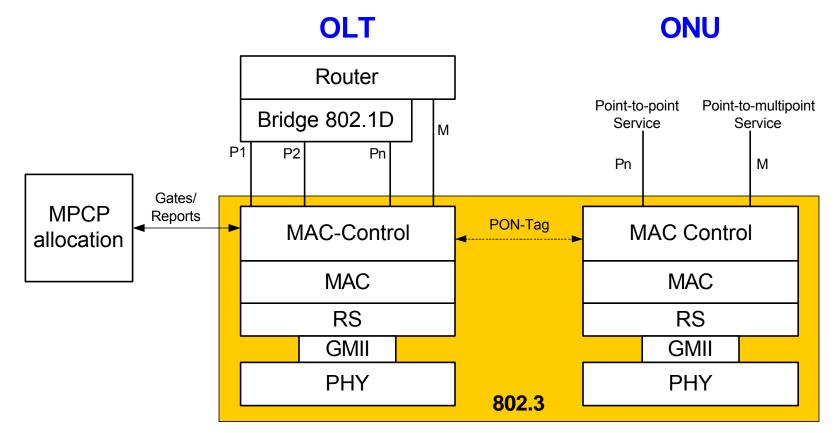
Multiplexing function


 Multiplexes frames coming from several bridge ports to a single interface to the PHY (and vice versa)

Two layering architectures are being considered for the multiplexing function:

- Reconciliation sublayer multiplexing (RSM)
- MAC-control multiplexing (MCM)

RS Multiplexing : Architecture


OLT

Pi: Point-to-point link to ONUi

M: Point-to-multipoint link

MAC-Control Multiplexing: Architecture

Pi: Point-to-point link to ONUi

M: Point-to-multipoint link

Summary

□ Important layering decisions

- "Native" port that cannot be attached to bridge for singlecopy broadcast service
- A requirement of "router" functionality at OLT and ONU for single-copy broadcast service
- MPCP at MAC-control layer
- MPCP allocation a separate block with MAC-control interface
- Protocol timing at MAC-control
- Laser control signal direct from MAC-control to PHY
- □ Need to decide
 - Layer of Multiplexing function
- □ Additional presentations give more details

P2MP Motion: MPCP Architecture

P2MP Track Motion:

Use proposal <sala_1_0302.pdf> as a basis for the first P2MP draft, with the exception of

- removal of slides 17, 18
- page 4, change to "Assignment of PHY_IDs if needed"

Motion: Dolors Sala Second: Tom Dineen