Ethernet Passive Optical Networks EPON

IEEE 802.3 Ethernet in the First Mile Study Group January 8-9, 2001, Irvine, CA Gerry Pesavento Alloptic, Inc. Tel 925-245-7647 Email gerry.pesavento@alloptic.com

Discussion

- 1. What is an Ethernet Passive Optical Network (EPON)
- 2. Applications for Ethernet PONs
- 3. Ethernet PONs vs. ATM PONs
- 4. Can Ethernet PONs provide QoS
- 5. EPON Standard Discussion

What is an Ethernet PON?

- Ethernet PONs are Point-to-Multipoint Passive Optical Networks
- Used for FTTC, FTTB, FTTH, FTTN
- Provides voice, data and video services (POTs, Ethernet, T1/T3, etc)
- Provides dynamically allocated bandwidth (1 to 1000 Mbps) and service to each ONU
- Switch/Router interfaces to Metro/Core Equipment
- Passive Optical Splitters eliminate active electronics in the local loop
- Optical Network Units behave like DSL or Cable Modems, on speed
- Typical deployments have 4 to 32 Optical Network Units
- Single fiber deployments with 1550 (1510) nm downstream and 1310 nm upstream
- Downstream is a broadcast point to multipoint
- Upstream requires a multiple access protocol for multipoint to point

Ethernet PON Frames, Time Slots

EPONs

PONs are point-to-multipoint optical network using optical splitters

Downstream → Ethernet frames are broadcast and extracted based on MAC address of frames

Upstream ← Multiple access protocol; variable time slots, variable frame size

Ethernet PONs - Visual

EPON – Covers many bases as an optical feeder

Why PON as an Optical Fiber Feeder

- Minimum fiber deployment
 - in the local loop
 - in the Central Office
- Lowest initial deployment cost
- Eliminate loop electronics
- Low maintenance requirements
- High bandwidth (WDM overlay)
- Voice, Data and Video
- Asymmetric or symmetric traffic
- Fault tolerant: power loss
- Broadcasts downstream (video)

FTTB

EPON Optical Network Units

PHILLOPTIC PHILLIPPIC ACCESS SOLUTIONS

FTTC

FTTH

Quality of Service (QoS) for EPONs

How is real time traffic (POTs, T1s, etc) provided over an Optical Ethernet last mile?

PONs operate in a "closed loop" last mile

Routers at OLT and ONU (CPE)

Use central office clock; guarantee low latency

Bandwidth: Over provision and manage

Prioritization: Layer 3 DiffServ/TOS

Layer 2 802.1p, 802.1q

RSVP

Queuing techniques, Bandwidth assignments

Video buffering

EPONs and APONs

ATM PON Standard: ITU G.983 (FSAN) Initialized in 1995, when ATM was a logical choice for the last mile APON standard lacks interoperability

	EPON	APON
Layer 2 Protocol	Ethernet	ATM
Transport	Frame	Fixed Cell
Speed	100 Mbps, 1.25 GBE 10 GBE	155 622 Mbps
Service Providers	CLECs, ELECs, DLECs, MSOs, ILECs	FSAN ILECs
Standard	IEEE ??	FSAN
Upstream	TDMA, Other	TDMA
Cost	Ethernet Switch	ATM Switch
Delivery	POTS, Data VOIP, IP Video	POTS, Data

EPONs and APONs

Advantages of Optical Ethernet (EPON) vs. ATM (APON) in the First Mile

- Low cost due to economies of scale
- ~320,000,000 Ethernet Ports deployed worldwide
- LANs are ~90% Ethernet today
- Byte life begins and ends as IP/Ethernet
- Ease of Scalability, Management
- Cable Modems and DSL Modems have Ethernet Interfaces
- Many IP/Ethernet chipset solutions to chose from
- Future cost curve of components (electrical, optical) steep for Ethernet
- Ethernet is a Universal standard, no variations
- CLECs (ELECs) can start with IP centric networks
- Carriers are now offering Ethernet WAN Services
- Ethernet beat FDDI, Token Ring, Fibre Channel, ATM in the LAN
- Work force Solution: Many LAN technicians comfortable with Ethernet

PON should be Packet based

Standards Issues: CSMA/CD vs. TDMA

Ethernet CSMA/CD – Layer 2 Protocol

- Contention based random access protocol
- Distance limited
- Timing not critical
- Point to point transceiver in both directions

Ethernet PON Broadcasting Downstream – Ethernet Framed

- Broadcast and select multiple access protocol
- No distance limitation and timing is not critical
- Single point to multipoint transmission

Ethernet PON Upstream TDMA – Ethernet Frames in Time Slots

- Managed collision free multiple access protocol
- No distance limitation but timing is critical
- Multiple point to single point transmission
- Upstream is sliced to multiple data slots, each time slot assigned to one node
- Upstream node is assigned to supply timing information and manage upstream collision
- Optical delay must be pre-measured to calculate the right timing assignment

Howard's Questions: A Summary

EPON scope, propose....

-define a point-to-multipoint Ethernet Passive Optical Network (EPON)
 protocol for use in optical access networks at rates scalable to multiple
 gigabits per second.
- define a high speed protocol that is optimized for Ethernet transmission in point-to-multipoint networks for Fiber-to-the-Building/Home/Curb applications, reaching several kilometers. Current PON standard is based on ATM or TDM transport. There is no existing high-speed Ethernet-based standard for passive optical point-to-multipoint deployments optimized for packet transmission.

Justification in terms of market potential

PON market \$2B cumulative in 4 years (Yankee Group)

Compatibility with 802 standards

Yes

Technical Feasibility

Demonstrated by multiple companies

Thank you

IEEE Ethernet in the First Mile (EFM) Study Group Monday, January 8, 2001
Irvine, CA
Gerry Pesavento
Tel 925-245-7647
Email gerry.pesavento@alloptic.com

