IEEE 802.3ah

FEC Cost Effectiveness for EFM

lior.khermosh@passave.com

Thanks for assistance to:

Vipul Bhatt

802.3ah – Raleigh, NC 1/2002

Scope

- FEC as the cost effective method to meet reach/split targets using low-cost optics:
 - Split-limited case: improves link budget
 - Reach-limited case: mitigates MPN effects
- Parameters to evaluate cost effectiveness of FEC

Cost Effectiveness Evaluation

■ Split limited:

- FEC improves link budget to enable high split ratios
- FEC \leftrightarrow High power Tx.
- FEC \leftrightarrow APD at ONUs (High sensitivity Rx.)
- $FEC \leftrightarrow Adding a split to the net$

■ Reach limited:

- FEC extends MPN-limited uplink reach to the 20km target and improve link budget
- FP laser + FEC \leftrightarrow DFB laser

Mechanism

- Parameters are vendor specific, numbers are merely estimations
- Shows typical cost estimation for 1 code RS(255,239) code
- Cost is relative [REL] as cost tag
- Assuming a revenue model which is not affected by small BW loss or gain

Coding Gain

- RS(255,239,8)
 - BER improvement of 10⁻⁴ to 10⁻¹²
 - Coding gain (@ 10^{-12}) **5.6dB** for AWGN

For some commercial PIN and APD receivers:

- **4.5dB for APD**, **3.5-4dB for PIN** -Sufficient for adding a two-way splitter
- FEC improves MPN penalty

FEC Cost - Gate Count

■ FEC gate count per coding gain

For the RS (255,239,8) the gate count is ~300KG @ 31.25MHz

- Silicon cost per gate count
 - \bullet 0.18 μ @ 100KG \equiv 1.0 [REL]
 - 0.25μ @ $100\text{KG} \approx 3.0[\text{REL}]$
- FEC Cost:
 - $0.18\mu \approx 3.0$ [REL]
 - $0.25\mu \approx 9.0$ [REL]

Power Dissipation

- FEC gate count is at 31.25M
- P=ρηG $f_{max} = 0.03 [\mu W/(MHz*G)]*$ *0.5*300[KG]*31.25[MHz]=0.15W
- Aggregating ports for P2P OLT:
- $P_{total} = NP = 0.15N[W]$
- High FEC gate count might limit port number in a card.

Optical Component Cost

■ Fundamental optical component based on 1000LX **70 [REL]**

FP lasers

> 120 [REL] ■ DFB cost

- Hi-power FP laser
 - Additional cost for –7dBm to –2dBm > 5 [REL]
 - ? [**REL**] Additional gain
- APD receiver cost 25[REL]

Passive Optical Splits

- Split No per dB $\left[\frac{C_{gain}}{3.7}\right]$ [split/dB] = 1
- New_ONU_no = 2*ONU_no_{last}
- The benefit from FEC increases with the increase in the number of ONUs

Facility Cost for P2MP

- Facility cost is divided by ONU_no
- Facility cost goes down when there are more ONUs per PON since there are less OLTs and fibers to the split point. The reduction is up to a limit of negligible OLT cost:


```
Saving = port_cost +Fiber_cost \approx

\approx (500+0.06*15000)/ONU_no |64| \approx 22 [REL/ONU]
```

■ Increasing the number of ONU to a PON may also affect revenues of BW distribution in some deployment scenarios.

Rate Loss

- Rate loss of code (255,239,8) RS code 6%.
- Rate loss due to increasing sync. time in P2MP uplink receiver
- Assuming reasonable BW loss, the effect of the BW loss on most deployment scenarios is negligible since the system is not deployed in full BW capacity.

Hi-Split/Short-Reach Comparison

■ FEC improves link budget to enable high split ratios

■ FEC is cost effective for Hi-split/short-reach

Long-Reach Comparison

- FEC extends MPN-limited uplink reach and improves link budget
- FP laser + FEC \leftrightarrow DFB laser
 - $3 \leftrightarrow 51 [REL]$
- FEC is cost effective for long-reach
- Possibilities:
 - Dividing APD cost by ONU number can be considered to extend splits in uplink

Conclusion

- FEC is a cost effective method to meet reach/split targets using low-cost optics:
 - Improves link budget
 - Extends MPN-limited reach