

Major Items needed for a complete specification

Supporters

BellSouth Brian Ford Francois Fredricx Alcate Frank Effenberger Quantum Bridge Jerry Radcliffe Hatteras Networks Kenji Nakanishi NTT Kent McCammon SBC Zonu Meir Bartur Oren Marmur Flexlight **Telecom Italia Lab** Paolo Solina Raanan Ivry Broadlight Terawave Robert Deri Agere Walter Soto **NEC** eLuminant Zheng-Yang Liu

Issues

Current draft items:

- Dynamic performance
- Budget adjustments
- Future draft items:
- Power control
- Isolation requirements

Dynamic performance

- General idea: We want one ONT PMD if at all possible, used in as many systems as possible, achieving high volumes ASAP
- There are diverse opinions on the values of the timing performance
- Compromise: Let's try to reach agreement on the PMD parts of the overhead
- Non-PMD parts of the overhead in the OLT can be variable (or standardized later, if possible)

Technical Details

- ONT: Ton < 16 ns. Toff < 16 ns.
 - This matches the clock precision of the MPCP
 - This is very forgiving anybody can do it
 - There is zero extra cost for achieving this
- OLT: Tdsr+Tlr* < 50 ns.</p>
 - *Tdsr+Tlr does not include allowance for timing inaccuracies, clock recovery, or burst delimiter
 - This value has been proven in the literature
 - OLT maker can locally optimize other timing values

Burst Mode Transmitter (1)

Compromise advantages

- ONT behavior should be standard, not optional
 - A PON contains many ONTs we don't want to have to manage many different kinds
- This middle-of-the-road timing value will achieve volume sooner and with less risk
 - Values are compatible with ITU-T GPON system, hence there will be one optic for both systems
 - Removes the system-level choice from the PMD manufacturer's decision tree

Budget Adjustments

- Initial budget assumed an output power of +2 to -3 dBm for the ONT transmitter
 - This results in aggressively low OLT sensitivity
- A recent meeting of the Q.2/15 agreed that the ONT transmitter output power be changed to +3 to -2 dBm, with corresponding changes to the OLT Rx
- It is recommended that IEEE follows suit

Issues

Current draft items:

- Dynamic performance
- Budget adjustments

Future draft items:

- Power control
- Isolation requirements

Power Control

- The dynamic range of 20+dBs can be difficult, especially for APDs
- There are three solutions to this problem
 - Reduce the fiber plant loss range
 - Practical in mass FTTH deployments
 - Early deployments might have trouble
 - Give the ONTs power control
 - Nearby ONTs lower their power output
 - Requires a method of control
 - Overcome the problems of OLT dynamic range
 - Might be difficult to do and increase cost

System Impacts

- Power control as an optional factor?
 - PC may add cost to the ONT
 - PC not required in all settings
- However, optional ONT PC will not allow all combinations of OLT-OSP-ONT
 - At least one part of the network must take up the excess dynamic range: OLT, OSP, or ONT
- Either make PC mandatory, or learn to manage the combinations

Granularity of Power Control

- Minimum power variation needed is 6 dB
 Oply a fow (2 or 3) lovels are percented.
- Only a few (2 or 3) levels are necessary

Control Concepts

- ONT defaults to full power
 - Insures initial ranging (or at least detection)
 - If power control is optional, full power is default for ONTs that do not support it
- OLT tells ONT to go up or down a level
 - Finesses the issue of 'how many levels'
 - Request valid during ranging and operation
 - Ranging: Ensures that bright ONT can join the network
 - Operation: Compensates for `seasonal' variations in optics

PMD interface requirements

- PC will require OLT PMD to have a received signal strength indication (RSSI)
 - (RSSI is also useful from an operator standpoint)
- The accuracy and precision needs to be carefully described
 - In general, RSSI signals are not linear over the whole range of input signals
 - Absolute accuracy is not that good
- Most importantly, the RSSI signal must track the actual Rx sensitivity and overload

Isolation/ORL Requirements

 Using the formalism established in G.983.3 – appendix IV, the following are derived

Output Parameters	Туре 1	Type 2	Based on G.983.3, Ap
Isolation of ONU Rx from 1310nm	6	6	Eqn. IV:1
Isolation of OLT Rx from 1490nm	16	24	Eqn. IV:4
Min OLT Return loss at 1310nm	13	11	Eqn. IV:3
Min ONU Return loss at 1310nm	2	0	Eqn. IV:2 and 5

Note that ONT requirements are very easy,
 OLT requirements are somewhat harder