MPCP and **TDM** Services

Vincent Bemmel, Alloptic

Two Service Models...one protocol

FTTH

- 1. TDM (POTS)
- 2. Static BW Allocation
- 3. High BW Data (no sharing)
- 4. 1GBps; e.g., 64 users @ 15Mbps
- Cost/simplicity Critical

FTTB

- High BW Data
- 2. Dynamic BW Allocation
- 3. TDM (T1/E1, DS3)
- 4. 1GBps; e.g., 16 users @ 100Mbps
- QOS/SLA Critical

CLECS

Let's make it a flexible protocol!

P2MP Ethernet realities

- Very low number of ONUs (~64) sharing 1Gbps
- Expect vast majority of deployments to use:
 - Low cost optics
 - Multi-service ONUs including legacy TDM
 - ONU doing 'fine scheduling' within fixed timeslot
- BER $\leq 10^{-12}$
- Ethernet is bursty by nature
- TDM is not 'automatically' supported
- MPCP requires special considerations for TDM

TDM Requirements

- Absolute requirements:
 - Cyclic nature
 - Low latency
 - Low jitter
- True TDM voice & data
 - PCM voice emulation and T1/E1 transport
 - not 'TDM-like', as in VoIP
- Maximum latency specified in the standards:
 - GR909: **1.0 ms** one way
 - ITU G.982/FSAN: **1.5 ms** one way

Latency requirements

GR-909:

R7-1 [345] The **round trip** delay through an integrated FITL system consisting of an HDT and ONUs connected by an ODN optical path **shall not** exceed **2.0 ms**. The round trip delay is equal to the time it takes for a voice frequency signal to travel from a voice service interface of an ONU to the switch-side interface of its master HDT, loop-back through the HDT and reach a voice service interface at another ONU.

O7-2 [346] The **round trip** delay through an integrated FITL system consisting of an HDT and ONUs connected by an ODN optical path **should not** exceed **1.4 ms.**

Transport delay requirements are driven by the service requirements of voice services.

ITU-T G.982:

A maximum of **1.5 ms** is recommended for the mean signal transfer delay between [the SNI] and [UNI] for fibre-to-the-home applications.

Latency & jitter

- Jitter = variability of latency of individual packets
- Directly affects QOS of isochronous services
- P2MP TDMA Cycle should be within TDM latency budget
- Challenge: keep bounded within standard specified limits

MPCP approach to TDM

- 2 modes to consider:
 - Non-Cyclic (in the proposed baseline today)
 - OLT explicitly grants individual timeslots
 - GATE includes short list (1-4) of absolute Timeslot times
 - Cyclic (Proposed enhancement)
 - ONU is granted to transmit cyclically
 - ONU can precisely predict next timeslot.... and schedule time-critical transmissions
 - Two options:
 - Limited one GATE schedules up to N cycles, or
 - Perpetual one GATE schedules perpetually

ONU's scheduling dilemma

TDM via non-Cyclic MPCP

Non-Cyclic MPCP – observations

Advantages:

- 'Stateless' ONU
- Granting is explicit
 - no extra mechanisms to modify, terminate

Issues:

- Continuous GATE stream not very natural to static BW model
- ONU cannot predict next timeslot limits scheduling
- OLT scheduling complexity = F(# ONUs, cycle)
- BW overhead
 - Downstream: inserted GATEs
 - Upstream: inserted REPORT for every GATE? (ranging loop)
- Jitter/latency prone
 - Downstream: inserting GATEs
 - Upstream: late GATEs
- Appropriate for TDM??

TDM via Limited Cyclic MPCP

Limited Cyclic MPCP – observations

Advantages:

- Improvement over single-GATE scheme = F(#cycles)
- Reduces continuous GATE/REPORT BW; jitter/latency
- ONU can precisely predict next timeslot (sometimes)

Issues:

- Complexity at OLT still an issue
- Still at risk for jitter/latency
 - increases with higher # ONUs & smaller cycles
- New fields in GATE: 'Cycle' and 'TTL'
- Mechanism to modify, terminate future grants:
 - To modify:
 - New GATE
 - To terminate:
 - New GATE w/ Length = 0 or TTL = 0, or
 - · Let grant expire
- Detect lost GATEs
 - Time-out at OLT (using Ack REPORT)

TDM via Perpetual Cyclic MPCP

"Set it & Forget it"

"Set it and Forget it"

• Not a new concept...

Perpetual Cyclic MPCP – observations

Advantages:

- Eliminates jitter/latency & BW side-effects of non-cyclic MPCP
- Reduced OLT complexity
- ONU can precisely predict next timeslot (at any time)
- 'TTL' = "Perpetual" in provisioning GATE
 - Note: 'Cycle' could be distributed at initialization in simple system

Issues:

- Mechanism to modify, terminate future grants
 - Similar as Limited Cyclic MPCP
- Detect lost GATEs
 - Time-out at OLT (using Ack REPORT)
- Note: periodic Ranging GATE = implicit renewal

Risks of losing a GATE?

MPCP mode	Lost first GATE	Lost renewal GATE	Lost re- provisioning GATE	Lost Revoke
■ Non-Cyclic (n<5)	Starts w/next GATE (start late n cycles)	latency till next GATE (n cycles)	Changes after next GATE (n cycles)	N/A
■ Limited Cyclic (N)	 Starts w/next GATE (start late N cycles) or Starts after OLT timeout & re-issues GATE 	■ latency N cycles or ■ latency till re-issue	Changes late N cyclesorChanges after OLT timeout & re-issue	Stops after N cycles orStops after OLT timeout & re-issue
■ Perpetual	Starts after OLT timeout & re-issues GATE	N/A	Starts after OLT timeout & re-issues GATE	Stops after OLT timeout & re-issue

- Perpetual GATE model:
 - Ack REPORT returned
 - OLT re-issues GATE if no REPORT detected (time-out)
- Very, very low risk!!
 - BER $\leq 10^{-12}$
 - MAC-Control messages are high priority

Summary

- TDM support is critical to success of P2MP
- Ethernet is bursty by nature
- TDM is not 'automatically' supported
- MPCP requires special considerations for TDM
- Cyclic mode in MPCP
 - Allows ONU to accurately predict next timeslot & optimize time-critical transmissions
 - Reduces/eliminates BW and Jitter/Latency overhead
 - Very appropriate for TDM
 - Accomplished via minor enhancements
- Proposed to add to the Baseline