



# Delivering Data and Streaming Video over a

# P2P Switched Fast Ethernet First Mile Network

Sergiu Rotenstein - NBase-Xyplex - srotenstein@nbase.com

IEEE 802.3 EFM Task Force - St. Louis, - March 2002 - S. Rotenstein







#### Agenda

- Provide a better understanding of the services
- Provide a better understanding of the traffic types
- Evaluate the traffic distribution in a P2P network
- Evaluate the bandwidth required per network segment
  - Backbone
  - Distribution to subscriber
- Conclusions regarding P2P distribution links







## Services and Requirements

- Services
  - High Speed Unicast IP traffic
    - ◆ Internet/Intranet
    - Video On Demand
    - Voice(VoIP)
  - Streaming Video Multicast IP traffic
- Bandwidth Assumptions
  - Internet/Intranet/VoIP traffic is not problematic
  - Streaming Video requires very high bandwidth
    - ◆ 1000+ MPEG-2 channels @ 7 Mbps
    - ◆ VoD MPEG-2 Channels @ 7 Mbps
    - ◆ HDTV channels (@ 20 Mbps)
  - Different QoS/CoS requirements for each traffic type







### Services Sources and Traffic Requirements

- Services Sources and Location
  - Servers local to the metro network
    - Internet/Intranet Access
    - VoD Servers
    - Streaming Video Servers
  - High bandwidth requirements over the backbone
  - Selected traffic reaches the distribution links
- Traffic Requirements
  - Data no special CoS/QoS
  - Streaming Video
    - Packet multiplication & pruning processing
    - High bandwidth and strict CoS/QoS
  - Voice low bandwidth, CoS/QoS requirements





#### Network Architecture



3/6/2002







#### Backbone Network Architecture

- High Bandwidth Multi-Gigabit Ethernet
- Services Connected straight into the Metro Backbone
- IP Unicast and Multicast Routing in the Backbone
- Layer 3+ Routing to Layer 2 switching connectivity @ PoP
- Interconnects the Distribution PoPs
- PoP serves tens/hundreds/thousands subscribers
- Desirable
  - Physical or virtual separation of the Unicast and Multicast traffic
  - Two backbones Unicast Backbone & Multicast Backbone
  - Assures QoS/CoS for each type of service







#### Distribution Network Architecture

- Multi-Gigabit Connectivity to the Backbone
- P2P Link to the subscriber
- Layer 2 Switched Traffic
- Subscriber Separation: VLANs
- Layer 2 Multicast Traffic Pruning:
  - IGMP Snooping, from the distribution to the subscriber
- Multiple CoS required (4-8)
  - From the distribution to the subscriber
  - Per service





#### Network Architecture









#### **Backbone Traffic Requirements**

- Streaming Video/IP Multicast Backbone 10 Gbps
  - 1000 MPEG-2 channels @ 7 Mbps = 7 Gbps
  - 350 HDTV channels @ 20 Mbps = 7Gbps
- IP Unicast Backbone -10 Gbps
  - VoD
    - ◆ 1000 MPEG-2 movies = 7 Gbps
    - ◆ 350 HDTV movies = 7 Gbps
  - Internet/Intranet traffic
  - VoIP traffic





#### Distribution Traffic Requirements

- Do we need to have 100 TV channels to each home?
- A subscriber link needs to carry only the selected channels
  - VoD IP Unicast traffic
  - Selected Video Streams
    - Multicast Pruning based on a subscription to the specific channel
- 3.5 TVs per household worst case
  - 4 MPEG-2 channels/VoD movies @ 7 Mbps = 28 Mbps
  - 4 HDTV channels/VoD movies @20 Mbps = 80 Mbps







#### Subscriber Link Bandwidth

- With a 100 Mbps link there is enough bandwidth left for:
  - Internet/Intranet access
  - VoIP
  - Other services
- Compression improvements reduce the video bandwidth requirements and/or enable more channels for the same bandwidth
- 100 Mbps P2P sufficient today and in the future





#### Fast Ethernet vs. Gigabit Ethernet P2P

- Cost components:
  - Backbone Network: multi-GbE vs.. multi-10GbE
  - Distribution Switching Fabric Cost
  - Distribution Switching Control: CPU & memories speed, etc.
  - Optics: Fast Ethernet vs.. GbE
- Same PMD should serve Fast and Gigabit Ethernet
  - Same Standard effort
  - Customization for cost reduction probably not necessary !!







#### Single Fiber Distribution Architecture

- Cost of single fiber optics insignificant addition
- Single wavelength FP 1310 nm commodity
- Leaves open the 1550 nm for Analog CATV downstream
- VCSEL solution will be price & performance competitive
- Lowest cost solution
  - Fiber Cost
  - Connectors & Splicing Cost
  - Equipment Density front panel real estate
- Major hurdle: <u>optical reflection</u>
- May be contained through optical infrastructure design
- System may incorporate inexpensive reflection detection







#### Single Fiber Distribution Architecture

#### **PROPOSAL**

# The same Single Fiber 1310 nm bi-directional PMD should be approved to support both Fast & Gigabit Ethernet







## Single Fiber 1310 nm 125 Mbps - 1.25Gbps PMD

| Description                              | ONU/OLT Module          | Unit  |
|------------------------------------------|-------------------------|-------|
| Transmitter Type                         | Bi-directional, 1 fibre |       |
| Signaling Speed                          | 0.125 - 1.25            | GBd   |
| Link Length (range)                      | 0.5 - 10,000            | m     |
| Power Budget                             | 10                      | dB    |
| Wavelength (range)                       | 1270 to 1360            | nm    |
| Trise/Tfall (Max, 20%-80% response time) | 0.26                    | ns    |
| RMS spectral width (max)                 | 2.4                     | nm    |
| Average launch power (min)               | -9                      | dBm   |
| Average launch power (max)               | -4                      | dBm   |
| Extinction ration (min)                  | 9                       | DB    |
| RIN (max)                                | -120                    | dB/Hz |
| Receiver sensitivity (min)               | -19                     | dBm   |
| Return loss of ODN (min)                 | 20                      | dB    |
| Return Loss of module                    | 18                      | dB    |