
Compliance Layering Baseline Proposal

Bob Gaglianello
Ajay Gummalla
David Horne
John Limb
Dolors Sala

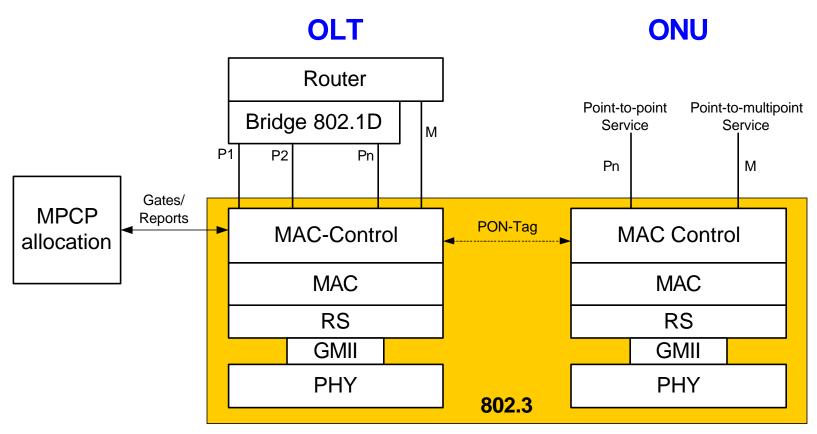
Multiplexing Function

- Multiplexing function
 - Multiplexes frames coming from several bridge ports to a single service interface
- A tag is carried within the preamble of each frame
- Two layering solutions are proposed
 - Reconciliation sublayer multiplexing
 - MAC-control layer
- RS multiplexing has too many issues pending to be resolved
 - Too early to be approved as baseline
- Propose to specify multiplexing function at MAC-control

RS Multiplexing: Architecture

Pi: Point-to-point link to ONUi M: Point-to-multipoint link

RS Multiplexing: Properties


RS multiples vMACs

- Tag exchange is at the RS layer
 - MAC and MAC-control do not need to be aware of tag
 - Requires virtual-MACs (vMACs)
- Multiplexing of frames occurs at the RS layer
 - Each MAC may offer one frame for transmission to RS layer
 - Frame can suffer variable delay at this stage
 - RS cannot distinguish between data and control frames
 - How to guarantee priority for control frames over data frames?
 - Need modification of interface to account for these two issues
- Several MAC-control entities
 - Grants are assigned to each individual vMAC and not per ONU basis
 - ONU vMACs operate in separate burst transmissions (more upstream overhead)
 - Grants to same ONU but different vMAC cannot be sent in a single gate message (more downstream overhead)

RS Multiplexing: Service Interface

- Need to guarantee constant delay across MAC
 - Define a backpressure mechanism to stop frames at MAC-control
- Need to guarantee priority of MAC-control frames over data frames
 - RS needs to know type of frame offered at each vMAC to give priority to the vMAC offering a control frame
- The extension of interface to address these issues is elaborate
 - Description still in progress
 - Involves flow control across interface

MAC-Control Multiplexing: Architecture

Pi: Point-to-point link to ONUi M: Point-to-multipoint link

MAC-Control Multiplexing: Properties

- MAC-control multiplexes frames
- Tag reaches the MAC-control layer
 - Need to augment service interface to pass the tag to/from the reconciliation layer
 - RS layer inserts/deletes the tag from the preamble
- Multiplexing of frames occurs at MAC-control layer
 - Easy to give priority to MAC-control frames over data frames
- Single MAC-control entity
 - Enables global view of the system which is required for arbitration between ONUs at the OLT
 - Granting and reporting can be done on per ONU basis
 - A single burst can contain frames from multiple virtual links in the same
 ONU

MAC-control Multiplexing: High Layer Service Interface

- MACclient-MACcontrol interface uses standard interface
- MAC-control can interface several MAC clients
 - Use one interface for each vport
 - MA_Data.indication
 - Tag is used by Multiplexing function to decide the vport to send the frame
 - MA_Data.request
 - A different tag value is attached depending on receiving vport interface
- Extended MAC-MACcontrol interface
 - Pass additional field containing tag
- RS-MAC interface described next
 - Uses standard interface

MAC Control Multiplexing: Low Layer Service Interface

MAC transparently passes the tag from/to RS using standard interface

Frame reception

- RS passes the tag in two specific bytes of the preamble
- MAC passes the tag to MAC-control
 - MAC collects these two bytes and passes it together with the frame

Frame transmission

- MAC replaces 2 bytes in the preamble with tag from MAC-control
- RS adds CRC in the preamble before transmission

Properties

- Frames are delivered and transmitted to the MAC layer one at a time
 - No more than one frame below MAC-control at a given time
 - No conflicts between data and control frames below MAC (as current Ethernet operation)

Summary

RS multiplexing introduces architecture issues

- Variable delay across the MAC layer an below
- Additional flow control could solve it
- Scheduling and prioritization required in RS layer
- This is a significant change from current MAC interface operation

A simple solution is available: MAC-control multiplexing

- It is simple to pass the tag up
- Maintains existing frame flow across the MAC
- Extension of the service interface specification is "minimal"
- Allows a single burst transmission for both P2P and P2MP service
- Avoids virtual MACs

Overall architecture is simplified