

IEEE 802.3 EFM

Ethernet PON timing Considerations

Lior Khermosh

lior.khermosh@passave.com

Scope

- Timing considerations in several implementation aspects of the Ethernet PON protocol
- Optical Timing Considerations
- Frequency Considerations
- Guard Time Calculation
- Phase Lock Considerations
- Packets at Grant Tail
- Bandwidth Utilization

EPON Communication Basics

Separated Uplink and Downlink Fiber or λ separation

- Downlink OLT transmits continuously.
 ONUs are referred by Ethernet addresses.
- Uplink Time division multiplexing among
 ONUs = Granting.

Frequency Considerations

- Each ONUs has a different clock
 - Ethernet defines ±100ppm accuracy → 400nsec drift in 2msec - requires fast calibration
- Frequency locking
 - ONUs Rx clock locked on OLT transmission
 - ONUs Tx. clock lock on Rx. clock

Optical Timing Considerations

- Standard Ethernet GBIC: Extinction ratio of only 9dB. Required Off level $>10 \cdot \log(No_{CPE}) + \frac{S_N}{N} = 35$ dB
- Laser switching time: Off $\sim 10\mu$ sec, On ~ 1 msec
- Optical switching time is covered by guard time
 ⇒ must be reduced for EPON (<100nsec).

Dedicated EPON GBIC.

Optical Timing Considerations

- Laser diode switching time < 10nsec</p>
- Fast laser driver is required
- APON Laser switching time is 3 bits
- APON devices have achieved nonmodulation isolation > 40dB

Guard Time Calculation

- A guard time at grant end \rightarrow
 - Ethernet guarantees 96 bits Interframe Gap for processing – Lower bound for guard time.
 - Laser switching time
 - All processes may overlap

Ranging

Unknown variable round trip delay

- Topology not guaranteed.
- Total delay 20km = 200µsec, can be limited to path variance.
- Round Trip Delay drifts with temperature changes ≈7ppm/C°
- Ranging process resolves the round trip delay of each ONU and initiate the granting mechanism.

Granting Scheme

Near – Far Problem

- Different transmission paths \rightarrow Variance in received power.
- Classes for optical path loss at ONU → Low Rx.
 power range and Low interference at OLT.
 Similar to G.982/G.983

Phase Lock Considerations

- A phase slip at every grant.
- Phase slip \rightarrow synchronization header.
 - Bit slip.
 - Byte slip.

Standard Ethernet

Bit Sync. – Commercial CDRs take 250 bits.

Octet sync.

- **Comma** encounters immediate Sync.
- Comma not present in Ethernet preamble.
- Ethernet packet 8 bytes preamble \rightarrow 64 transitions.

APON Phase Lock

APON

- Single Clock domain.
- Holding state for each ONU Phase.
- I Byte for phase sync. check.
- Requires a coherence bandwidth of the order 0.1bit/round_trip_delay = 3ppm for APON, 0.5ppm for EPON.
- Ethernet jitter tolerance is 0.75UI.
- APON Tighter Jitter spec. 0.02UI

Granting Scheme

Packets at Grant Tail

- Internal Fragmentation.
- Last packet does not fit the grant tail. (may add an unused time one packet up to 1517 bytes).
- Unexploited bandwidth of 0.5.L_{mean_packet}
- Smart queuing may reduce end of grant loss.

Total Unexploited Grant Time

Total unexploited grant time :

- Average utilization (@ average packet of 400byte) :
 - 3.3μ sec + switching time + header time

Scheduling Cycle tradeoffs

- Large Cycle Better utilization, Large buffer size.
- Small Cycle Low delay, Large overhead.
- Some traffics types require minimal delay.
 Voice: delay < order of tens of msec
 - E1: delay < order of msec

Bandwidth Utilization

Bandwidth Utilization

Conclusions

- Single clock domain OLT clock.
- Define Sync. header.
- Define minimal guard time.
- Define power classes.
- Short guard time \rightarrow High utilization.

