

The EFM-Copper Deadlock

IEEE802.3ah

Edinburgh, 20-22 May 2002.

Ehternet in the First Mile Edinburgh, May 2002 Page 1

- Michael Beck, Alcatel
- Massimo Sorbara, GlobespanVirata
- ♦ Tariq Haddad, Zarlink
- John Cioffi, Stanford University
- Douglas Artman, Texas Instruments
- Jacky Chow, Teknovus
- Christophe Del-Toso, STMicroelectronics
- Daun Langston, Metanoia
- Sedat Oelcer, IBM
- Klaus Fosmark, FirstMile Systems
- Mikael Isaksson, UpZide
- Daniel Bengtsson, Telia Research AB
- Per-Erik Eriksson, Ericsson
- Reza Alavi, Analog Devices
- Nelson Zagalsky, ADC
- Tetsu Koyama, NEC
- To be completed...

Goal of this presentation

♦ History of EFM-Copper: How did we get here?

Current status: Where are we?

Proposal: Where can we go?

EFM-Copper History Part I: Early History

♦ January 2001 (Irvine): All Copper Objectives Fail

- Y: 54 N: 31 Ethernet over Cu @ >= X Mbps @ >= Y km
- Y: 47 N: 39 EoVDSL @ >= X Mbps @ >= Ykm
- Y: 34 N: 32 Make recommendation re: EoVDSL
- Y: 33 N: 36 EoxDSL (Ethernet over some flavor of DSL)
- Y: 46 N: 24 Ethernet over Cu (for the MxU)
- Y: 61 N: 21 Ethernet over Cu (for the OSP)
- Y: 50 N: 27 One PMD for all Local Loop Cu Twisted Pair

EFM-Copper History Part II: The Copperheads Get Going

- March 2001 (Hilton Head Island): After presentations by Marvell, Elastic, Cisco and Alcatel, the copper objectives finally pass.
 - Y: 64 N: 1 A: 33 (Topologies:) Point to point on copper
 - Y: 68 N: 0 A: 27 (PHY Specifications:) PHY for copper

- May 2001 (St. Louis): Copper Rate-Reach Objective
 - PHY for single pair non-loaded voice grade copper distance ≥ 2500ft and speed ≥ 10Mbps aggregate

EFM-Copper History Part III: Spectrum Management

♦ July 2001 (Portland): Spectrum Management Objective

- The point-to-point copper PHY shall recognize spectrum management restrictions imposed by operation in public access networks, including:
 - Recommendations from NRIC-V (USA)
 - ANSI T1.417-2001 (for frequencies up to 1.1MHz)
 - Frequency plans approved by ITU-T SG15/Q4, T1E1.4 and ETSI/TM6

EFM-Copper History Part IV: The long-distance Detour

♦ November 2001 (Austin): The long-distance PHYs

PHY for single pair non-loaded voice grade copper, distance ≥ 4600m, 0.4mm ≥ 256kbps

- PHY for single pair non-loaded voice grade copper, distance ≥ 3700m, 0.5mm ≥ 4Mbps
- Include an optional specification for combined operation on multiple copper pairs
- ♦ The long-distance objectives get negative feedback at the IEEE802.3 closing plenary.

EFM-Copper History Part V: Recent History

- ♦ January 2002 (Raleigh): Only one rate-reach objective survives the "rewording effort".
 - PHY for single pair non-loaded voice grade copper distance ≥ 750m and speed ≥ 10Mbps full-duplex
- ♦ March 2002 (St. Louis):
 - "Higher layer" baseline proposals are approved by CuSTF and EFM TF (Marris, Fosmark, Simon).
 - VDSL baseline (*Rezvani*) is approved by CuSTF but **rejected** by EFM TF (Y:43 N:37 A:47 / Y:24 N:21 A:28)
 - A motion to restrict work to higher layers (*Eckert*) received considerable support in EFM TF (*Y:51 N:32 A:68 / Y:27 N:24 A:33*)

The St. Louis Deadlock Analysis (1)

- Why did the VDSL baseline fail in the Task Force?
 - VDSL vendors were unhappy about the lack of progress on the linecode selection criteria.
 - Some people were unhappy about the short range of the proposed PHY. Other PHYs might allow us to address a larger part of the market.
 - Some people wanted to limit the work of the CuSTF to the layer between the γ-interface and the MII. This was already proposed in Raleigh (without a motion) and brought to a vote for the first time in St.Louis.

The St. Louis Deadlock Analysis (2)

We seem to agree that...

- We want to do something on point-to-point copper.
- It may have applications in the public network, it may have applications in MTU/MDUs.
- Different xDSL flavors can be used, if we define the layer between the γ-interface and the MII.

But we disagree on...

- The rate-reach pair that will optimize the potential of EFM-Copper.
- The choice of a technology and/or a linecode for EFM-Copper.

- Three "higher layer" baseline proposals have been approved.
- Below the γ-interface, we don't have (and may never have) 75% support in the Task Force for any technology or linecode.
- We could stop now and write a draft around what we have, but the IEEE 802.3 Working Group will never call it a PHY.
- If we don't think of something quickly, the Copper Track will die without a standard.

- The authors and supporters of this presentation are seeking support for the following motion:
 - Change the Copper PHY objective into: "A specification of the functions needed to transport IEEE 802.3 MAC frames over xDSL systems that have a PTM specific γ-interface as defined in ITU-T Recommendation G.993.1 Annex H."
- This change would allow us to save the work we have done so far, while getting out of the linecode deadlock.
- The specification may become a separate Clause or Annex in the IEEE 802.3 standard.

Ehternet in the First Mile Edinburgh, May 2002 Page 13

- "Ethernet-over-xDSL" has been proposed in these presentations:
 - staszak_1_01_2001.pdf
 - easley_1_0501.pdf
 - kimpe_1_0901.pdf
 - langston_1_0901.pdf
 - bar-or_1_1101.pdf
 - langston_1_1101.pdf
 - kimpe_1_0102.pdf
 - haas_1_0102.pdf
 - beck_1_0102.pdf