MPCP – Timing Model

Onn Haran, Ariel Maislos – Passave

Bob Gaglianello – Lucent

Dolors Sala - Broadcom

Glen Kramer – UC Davis

Jian Song – Salira

Yinghua Ye - Nokia

Updates From Baseline

- □ Laser control interface
- □ Guard band equation informative
- ☐ Guard band for OLT ⇔ ONU clock drift
- □ PHY ⇔ MAC jitter constraint
- □ Time information loss fault mechanism

Laser Control Interface

- ☐ There are two options for laser control interface:
 - MAC control asserts a signal
 - MAC control will set laser control using an internal register
 - The transceiver can read this value using an unspecified interface

Guard Band Definition

- OLT must maintain a guard band between transmissions from different ONUs to accommodate:
 - OLT ⇔ ONU clock drift
 - ONU laser turn on and turn off
 - OLT receiver locking
 - Implementation jitter
 - Fiber length changes
 - State machine synchronization

Guard Band Equation - Information

The equation should be used to analyze the contributors to guard band, in order to set limit where needed

```
Tguard-band =
  Tclock-drift +
  max(Tlaser-on, Tlaser-off) +
  AGC delay +
  CDR acquisition delay +
  2 * mac→phy jitter + 2 * phy→mac jitter +
  Tthermal-drift +
  2 * clock resolution +
  comma sync time
```

Guard Band Equation (cont.)

```
Tclock-drift =
  max(Tgrant length,
      Tmax between downlink timestamp) *
  max OLT⇔ONU clock ppm difference
Tthermal-drift =
  Tmax between uplink timestamp *
  Maximal thermal gradient *
  (Tupsteam propagation delay *
             Upstream propagation gradient +
      Tdownsteam propagation delay *
             Downstream propagation gradient)
```

Guard band for OLT \Leftrightarrow ONU clock drift

- □ The clock drift between OLT and ONU has a significant contribution to guard band size
- A strict limit should be set
 - Suggested value is between 20nSec and 50nSec
- □ For example, a value of 40nSec could be reached by setting the following parameters:
 - Time stamp every 4mSec and +/- 5ppm
 - Time stamp every 200uSec and +/- 100ppm

PHY MAC Jitter Constraint

- □ PHY → MAC jitter is accounted twice in guard band
- ☐ MAC → PHY jitter is also accounted twice
- □ A small constraint must be guaranteed:
 - Suggested value 20nSec to 50nSec

May 2002

Fault: Time Information Loss

- □ When an ONU loses time information, it may interfere with neighboring ONUs' transmission
- □ The misbehaved ONU's transmissions may not be received, causing collisions
 - OLT will not succeed at detecting which ONU is at fault
- □ The situation is made worse by slow-reacting
 OLT software implementation
- A mechanism for detecting ONU time information loss at ONU should be defined

Detection Mechanism

- □ Define TD as difference between TL (local PON clock) and TS (received timestamp value)
 - TD is calculated whenever a valid MPCP message is received.
- ☐ If ABS(TD) >= 5* Tguard-band-jitter →
 Move to reset state
- Allowed jitter is the part of guard band equation susceptible to jitter:

```
Tguard-band-jitter =
  Tclock-drift +
  2 * mac→phy jitter + 2 * phy→mac jitter +
  Tthermal-drift +
  2 * clock resolution
```

Further Work

- Need to finalize laser control interface
- □ Need to finalize reset state soft or hard
- Waiting for inputs from PMD group to fine tune constraints