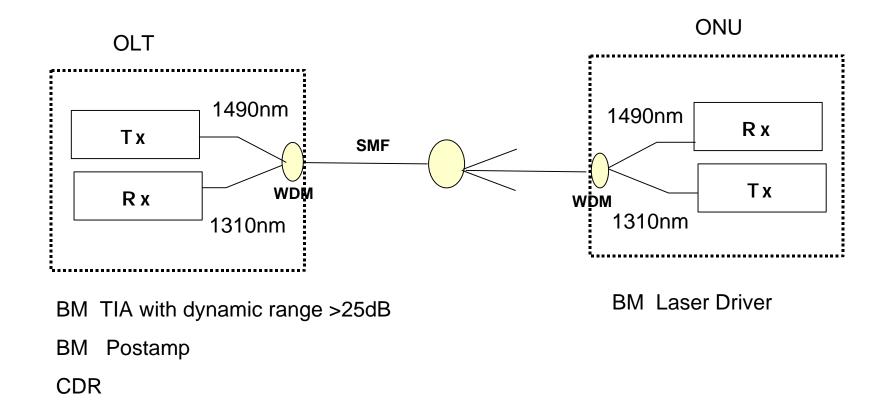

Embedded PHY parameters for MPCP

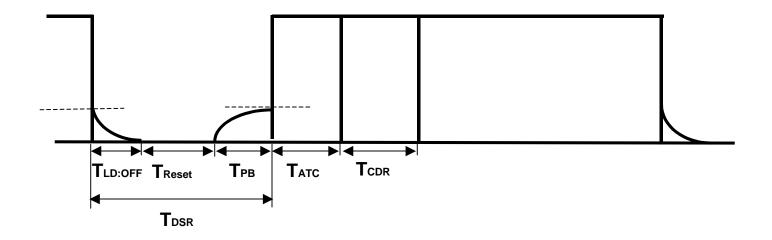
Jin Kim Samsung IEEE802.3ah, Edinburgh, May,2002

EPON architecture

Variable packet size Ethernet frame



IEEE 802.3ah Ethernet in the First Mile


What to consider

- MPCP is to be addressed in consideration of available PMD parameters for EPON, as higher layer can adapt to PHY capacity
- Conventional IFG= 96 bits is valid for CSMA/CD, not for EPON using TDM
- Timing model, scheduling cycle, and MPCP parameters including guard time are coupled with PHY parameters, which affect system performance
- Burst mode operation has sensitivity 2dB worse and worse jitter condition than continuous mode operation
- APON based on cell transmission has relatively tight timing spec.
 while EPON based on packet transmission has less tight spec.

EPON modules for uplink

Parameter Definition

TLD:OFF: LD turn off time

• T_{PB} : LD prebias time

T_{ATC}: threshold-level recovery time

TCDR: clock recovery time

• T_{Reset}: reset time

• T_{DSR}: dynamic sensitivity recovery time

1.25Gbps Transceiver parameters

			BM Transc. 2R	GE Transc.
		Symbol (unit)	2R	CM 2.5Gbps w/ sw
ONU Tx	Rise/fall time (20-80%)	(ns)	<0.3	<0.3
	LD prebias time	T _{PB} (ns)	2 - 12.8	>10
	LD turn off time	TLD:OFF (bit)	1 - 2	>10
	ER	dB	>10	>10
OLT Rx	Threshold-level recovery time	T _{ATC} (bit)	16	
	Clock recovery time	TcDR (bit)	NA	
	Dyn. sensitivity recovery time	T _{DSR} (bit)	>20 - 24	

Implementation

- Bit synch.
 - (i) With 2R Rx + legacy Ethernet SERDES chip
 - CDR with current Ethernet chip take 160-200bits (including comma synch.)
 - no change of PHY interface, compatible with existing Ethernet PHY chip
 - need longer guard band
 - (ii) With 3R Rx + Ethernet SERDES chip with optional clock interface change
 - need shorter guard band
- PHY layer Overhead is estimated 3-6 bytes by most of FSAN companies (2002, March, EFM PMD track)
- Adapting to OLT, and universal spec for ONUs would be desirable (centralized system)

Signaling by MAC

Most of BM Rx have DSR time longer than (LD:ON + LD:OFF) time

Guard band = TDSR + TATC+TCDR+ Td

Td is guard band for clock drift due to clock mismatch, RTT change, clock resolution and variable delay

Open issue: Size of IFG ? From 96 bits down to 0 bit

Guard band Model

- Fixed GB
 - enough guard band to cover available PMD device capabilities
- Configurable GB
 - depends on consisting PMD device capabilities
 - OLT determines GB as a total of its DSR, ATC, CDR time plus extra guard time for clock drift
 - (if (LD:ON +LD:OFF) time> DSR time, replace DSR with fixed, enough (LD:ON +LD:OFF) time)
 - (not con figurable with ONUs' capabilites, which is multi-instancebased and adds complexity)
 - OLT capabilities (ATC, CDR time) report to ONUs in REGISTRATION message
 - OLT cap. Echo from ONUs in REGISTRATION_ACK message
 - ONU MAC signals PMD to turn on the LD at (prebias+ATC+ CDR time) ahead of Slot Start and to turn off the LD at (Slot Start +sum of Transmitted packet length)

802.3z GbE timing-related spec.

Figure 38-1-1000BASE-X block diagram

1000BASE-SX/LX jitter budget

Compliance point	Total jitter ¹⁾		Deterministic jitter					
Compliance point	UI	ps	UI	ps				
TP1	0.240	192	0.100	80				
TP1 to TP2	0.284	227	0.100	80				
TP2	0.431	345	0.200	160				
TP2 to TP3	0.170	136	0.050	40				
TP3	0.510	408	0.250	200				
TP3 to TP4	0.332	266	0.212	170				
TP4 ²⁾	0.749	599	0.462	370				

Signaling speed: 1.25±100ppm(GBd)
Trise/fall (20-80%): 0.26ns

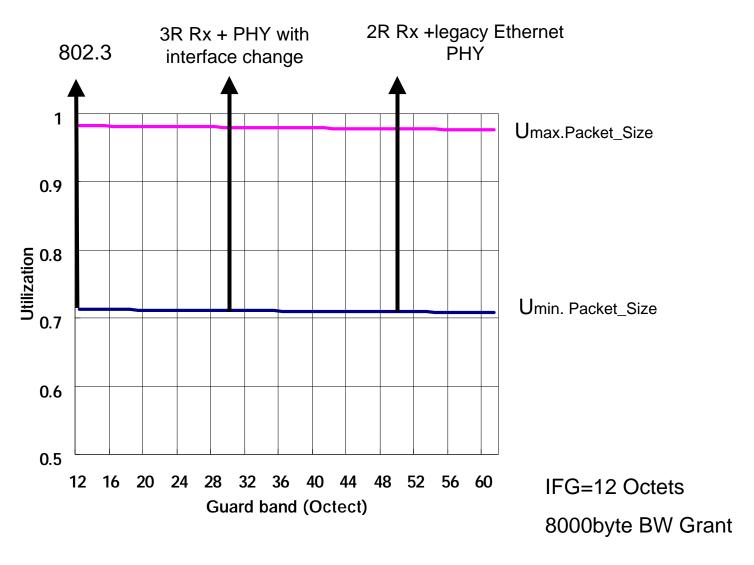
- Total jitter is composed of both deterministic and random components. The allowed random jitter equals the allowed total jitter minus the actual deterministic jitter at that point.
- Measured with a conformance test signal at TP3 set to an average optical power 0.5dB greater than the stressed receive sensitivity from receive characteristics.

IEEE 802.3ah Ethernet in the First Mile

Clock drift and Jitter

- EPON has a global system clock
- Clock synchronization is instance-based, as local clock is set at the point of every GATE reception
 - robust to clock drift
- Tolerable clock drift is +- 100ppm when using GE Transc.

```
for Rsv. Window size =2msec, Td = 400nsec
when clock drift is +- 40pppm, Td = 160nsec (25 Octets)
for 8000byte Grant_Length allocated to ONU,
IFG=12 Octet, and GB=50 Octets
BW Utilization = 0.709 (min. packet size) - 0.977 (max. packet size)
```


- Clock drift due to RTT change
 - with extended temperature optics -40 to 85°C

RTT change coeff. is about 7ppm/ °C, which is forgiving within the Rsv. window

If (OLT clock-ONU clock) > (threshold for clock mismatch) occurs over several consecutive windows, rerange the ONU for RTT calibration.

- guard band for 16bit clock resolution is 4 octets
- Jitter budget for EPON would be 0.749UI above 637kHz, and jitter tolerance, jitter transfer and generation are TBD according to device capability.

BW utility

IEEE 802.3ah Ethernet in the First Mile

Summary

- Issues of embedded PHY parameters for MPCP
- Need to gather from vendors standard data for PMD timing parameters for modeling and performance evaluation
- Configurable with OLT's capability and universal spec for ONUs' capabilities for system scalability and centralized management