EFM-Cu Framing & Error Detection

Barry O'Mahony

IEEE 802.3ah EFM Task Force Meeting Edinburgh, May 20-22 2002

Intel Labs

www.intel.com/labs

- ITU-T Q4/15 has defined a Packet Mode TPS-TC (i.e., PTM-TC) for xDSL
 - Transport of Ethernet frames a key intended use
- Questions raised in Raleigh regarding its suitability
 - DSL BER performance levels lower than traditional Ethernet Levels
 - Uses HDLC, a method out of favor in 802.3
 - PTM-TC not widely reviewed in 802.3 before adoption by ITU-T

The Issues

- MTTFPA Mean Time To False Packet Acceptance
 - Probability that an errored packet will not be detected by the PHY/MAC
 - Depends on underlying BER, and detection/correction capabilities of coding and framing
 - What's an acceptable level?

 - 10 billion years has been consider acceptable
 - That's ~10²⁵ bits, or ~10²¹ frames
- Framing overhead
 - Lower overhead \Rightarrow longer reach for given bitrate
 - Deterministic overhead

HDLC, 64b/66b, or ?

Intel Labs

www.intel.com/labs

Interleaver

 Convolutional interleaver enhances burst-noise protection

• 250 µsec. And 500 µsec. protection common

But generates latency:

Line rate, Mb/s		1.62	3.24	6.48	12.96	25.92
Value of N/I		8				
250 μsec of erasure correction	<i>M</i> , octets	2	4	8	16	32
	Delay, msec	5.9				
500 µsec of erasure correction	<i>M</i> , octets	4	8	16	32	64
	Delay, msec	11.8				

From [3]

• May be turned off

R-S Decode

- Code operates on 8-bit symbols (*m*=8, bytes)
- Can correct up to *t* byte errors, $t = \lfloor (n-k)/2 \rfloor$
- Output byte error ratio, P_E, as a function of channel byte error rate p:

$$P_E \approx \frac{1}{2^8 - 1} \sum_{j=t+1}^{2^8 - 1} j \binom{2^8 - 1}{j} p^j (1 - p)^{2^8 - 1 - j}$$

Intel

- Output BER, $P_B \approx \frac{1}{2} P_E$
- SCM (*n*,*k*): (255,239) ⇒ *t* = 8
- MCM (*n*,*k*): (240,224), (144,128) mandatory ⇒ *t* = 8

Descrambler

- Self-synchronizing
 - x^{23} + x^{18} + 1
- Reduces long run length occurrences
 - Keep demodulator happy
- 2× 3× BER multiplication

"Back of Envelope" Calculations

- VDSL spec'd for BER = 10^{-7} at α/β interface
 - T1.424 Part 1, § 12.3
 - \Rightarrow 10⁻⁷ \times 2 \times 255 \approx 5 \times 10⁻⁵ R-S codeword error ratio
- 2⁻³² prob. errored frame not detected for Ethernet CRC
- $5 \times 10^{-5} \times 2^{-32} \approx 10^{-14}$, » **10**⁻²¹

 Need to get ~7 orders of magnitude from frame encapsulation, or elsewhere

On VDSL Noise Margin ...

- DSL performance levels spec'd with 6 dB noise margin
 - i.e., specified BER levels would be met even if noise level were increased by 6 dB
 - So typical α/β -interface BER is actually $\approx 10^{-22}$
- Helps ensure data types requiring a certain bit rate will continue to work
- Non-adaptive Ethernet performance goals fit this model
- \Rightarrow Retain the margin

Frame Encapsulation

- G.993.1 PTM-TC
 - Byte-stuffed HDLC with FCS-16
- 64b/66b
- Other?

HDLC PTM-TC

• 16-bit CRC

- 2⁻¹⁶ detection failure (~2×10⁻⁵)
- Detects all single, double, and odd bit errors; all error bursts ≤16 bits
- Pros
 - Fast, easy frame lock; look for <flag><non-flag> sequence
 - Low complexity
 - Low average overhead for long frames (~0.8%)
- Cons
 - High overhead for short frames (~8%)
 - Overhead variable: data- & frame-length-sensitive
 - Could be 50+% worst-case

www.intel.com/labs

Intel

64b/66b

Pros

- Low overhead upper bound
- Limited run-length (but not needed here)
- Control codes protected against 3-bit errors
 - But bit errors at R-S output not independent; analysis difficult

Cons

- High Complexity (~2K flip-flops [2])
- Slow, complex frame lock
- No additional error protection for data bytes:

www.intel.com/labs

- Any bit errors in D0-D7 still a valid codeword
- Reputation for robustness due to typical low underlying PMD BER
- Not byte-aligned; poor fit with α/β -interface

Intel Labs

Other Alternatives

Rather than HDLC flag-transparency, use G.gfp-style header
[5]:

- Header contains Frame Length info
- No need for transparency mechanism
- Pros: Fixed overhead per frame overhead
- Cons: Complicates frame-lock

Recommendation (1)

- Add "ERROR" signal to α/β-interface to allow reporting of uncorrectable R-S codewords
 - Lowers error rate bound by [4]:

 $\frac{1}{t!} = \frac{1}{8!} = 2.5 \times 10^{-5}$

- Combined with HDLC FCS, should be adequate robustness
- TPS-TC above α/β-interface then knows to discard bad data

Intel

Recommendation (2)

 Use PDU-length-type header (e.g. G.gfp) if HDLC flag-transparency is unacceptable

www.intel.com/labs

References

1. Sklar, Bernard; *Digital Communications*; Prentice-Hall, 2000

- 2. Walker, et al; 64b/66b coding update, IEEE 802.3ae presentation, March 2000
- 3. ATIS Committee T1.424, Trial-Use Standard, Very-high-bitrate Digital Subscriber Lines (VDSL) Metallic Interface; to be published
- McEliece, R.J., & Swanson; On the Decoder Error Probability for Reed-Solomon Codes; NASA TDA Progress Report 42-84, Oct.-Dec. 1985
- ITU-T Draft Recommendation G.gfp, October 2001, Generic Framing Procedure

