EFM Copper

Exploring MAC-PHY ratematching

EFM November, 2001

Hugh Barrass (Cisco Systems)

MAC-PHY rate matching problem

 It is safe to assume that the EFM copper data rates will not match exactly existing 10Mbps or 100Mbps Ethernet

Odd numbers, asymmetry, non-deterministic...

Safe to assume that line rate will be <100Mbps

What about loop aggregation at short reach?

MAC-PHY interface based on MII

Need to determine goals / objectives for interface

... then examine solutions

Note: this presentation does not propose a solution

The exploration should invite proposals

Goals and Objectives

- Optimal use of PHY buffering
 Whole frame or multi-frame buffer will limit PHY integration
- Re-use of existing MAC silicon
 Including highly integrated multi-MAC, bridge devices
- Not mess with other protocols Including 802.3x?
- Be mindful of RMII, SMII
 Although out of scope...

PHY → MAC

This direction should be easy!

Assume MAC is always capable of 100Mbps (& full duplex) Support for 10Mbps or half duplex MAC unnecessary?

Open loop solution OK

No need for MAC to hold off PHY 802.3x allows pause of other station (nb latency!)

Simple solution – stretch IPG

PHY assembles whole frame & sends when ready

Needs 1 whole frame buffer

Adds more jitter (1 max frame time)

Can we eliminate frame buffer?

 Remember the reconcillation sublayer?

Allows some adjustment of MII interface

Could be used for finer grain rate matching (to reduce buffer)

Two more methods

Adjust the Rx clock

Stretch the clock cycle to match the line rate

May cause problems with some installed silicon (also may not work with RMII / SMII)

Use RxDv to "skip" cycles

MAC (via reconciliation) ignores clock cycles with RxDv de-asserted

Almost certainly won't work with currect MAC silicon – does work with RMII / SMII

IEEE802.3ah EFM November 2001

MAC → PHY

Open loop only works with fixed line rate

IPG stretch (as per 10G), MAC must know real line rate Does not work with HDLC

Would need pre-emptive PHY-MAC notification for rate adaption (or automatic loop aggregation)

Closed loop solution

PHY must tell MAC when buffer is filling

Varying levels of granularity → various PHY buffer sizes

Closed loop – pause frame

Send 802.3x pause to stop transmission

Frame insertion in PHY not advisable

Control of outbound data effects inbound service

Multi-frame resolution – requires large buffer

Causes very large jitter (max frame size)

Could interfere with station to station .3x
 Difficult to predict the interactions

Closed loop – other methods

Fake collision to apply back-pressure

Well known technique

Single frame resolution

Forces MAC to be in half-duplex

Confuses SNMP stats

TxClk stretch or skip

Same issues as for Rx

Maybe re-interpret CRS for skip (instead of new pin)

Reconciliation sublayer could rescue us

Hide the rate matching implementation from the MAC

Reconciliation sublayer

Either skip or collision

MAC doesn't see the events – no SNMP problem

Buffering or clock adjustment in RS - implementation specific

Could work with RMII / SMII

In conclusion

Multiple possible solutions

Need to define priorities / objectives

PHY buffering vs MAC silicon changes

Chip vendors vs systems vendors?

Proposals invited

... consensus?