Performance Gains from Vectoring in EFM

John M. Cioffi, George Ginis
EE Dept, Stanford Univ.

<u>Cioffi@stanford.edu</u>

gginis@stanford.edu

Downstream Vectoring

- Coordinate transmission to cancel FEXT.
 - "Partial coordination": treat subset of pairs.
 - "Full coordination": treat all pairs in bundle.

Upstream Vectoring

Coordinate reception to remove FEXT.

Downstream Rate vs. Reach

- ♦ VDSL parameters.
- → FDD plan 998.

Upstream Rate vs. Reach

- ♦ VDSL parameters.
- ◆FDD plan 998.

Vectoring in Private Networks

- 1 line easily allows 10Mbps at 5000ft.
- 2 lines enable100Mbps at 3500ft.
- 4 lines enable100Mbps at 5000ft.

Vectoring with Extra Bandwidth

- Wider bandwidth.
- 4 lines combined.

Cost Issues

- Vectoring allows a huge data rate/loop reach improvement for a moderate cost.
 - Including vectoring capabilities only requires adding an extra module to existing VDSL DMT implementations.
 - Computational complexity can be reduced thanks to the "sparseness" of the channel matrix.
 - Complexity increase is distributed over multiple lines.

Conclusion

- EFM performance is constrained by FEXT.
- Vectoring enables large performance gains.
 - 50Mbps downstream at 2500ft with 1 line.
 - 100Mbps at 3500ft with 2 lines.
 - 100Mbps at 5000ft with 4 lines.
- Extra design complexity is moderate.

