MPCP A Timing Approach

Ajay Gummalla, Dolors Sala, John Limb – Broadcom

MPCP Framework

 Multipoint extension based on MAC-control service interface and an additional SignalIndication to control burst mode

Timing Function

- MPCP is based on a Gate/Response mechanism
- Establishes a common time reference between OLT and ONUs
 - Reference is necessary to determine when the ONUs may transmit without overlap

Clock Domains

- All elements within a clock domain are based on a single clock and are frequency/phase locked.
 - Counters are incremented/decremented using this clock

Asynchronous Clock Domain

Downstream Clock Domain

Synchronous Clock Domain

Timing Inaccuracies

- Uncertainty in timing needs to be accounted for in the guard band
 - a) Jitter from clock domain shifts
 - Uncertainty in phase of two clocks running asynchronously
 - b) Jitter from worst case clock drift
 - Worst case clock offset: 200 ppm (200 KHz)
 - -Ex: counter that needs to count 1ms can be off by 200 bits
 - c) Jitter (not delay) from the time message is transmitted to when it is received
 - When messages contain time values, the variability in delay that should be accounted for in guard time
 - d) Jitter in message processing time
 - Jitter of software implementations can be in 100's of microsecs to millisecond
 - Jitter of hardware implementation can be negligible

Only protocol component of the guard time described here

Asynchronous Clock Domain

- MAC, transmit and receive clocks are independent
 - All timing uncertainties should be accounted for in guard band (a,b,c,d)
 - OLT and ONU MAC clocks can be synchronized accurately using frames
 - Eliminates jitter from worst case clock offset
 - Allowable guard band determines frame frequency

Downstream Clock Domain

- MAC Control operation in OLT is locked to its transmit phy clock
- MAC Control operation in ONU is locked to its receive phy clock
- OLT and ONU are synchronized through the receive bit/byte clock
- Only have to account for
 - clock domain shift on transmit
 - clock drift for the transmit duration

Synchronous Clock Domain

- The complete system is locked to OLT transmit clock
- Needs little guard-band

Timing Proposal

Timing Operation

OLT frequently transmits a marker (time reference)

 Marker contains the timestamp of when this message left the OLT based on a local OLT clock

ONU adjusts its local clock to the marker

ONU can update the counter with the received timestamp

Timing Operation (2)

- The markers are sent frequently
 - The time between two markers need not be constant
- Gate messages are transmitted independent of markers
 - Gate message contains the start time according to clock established by the markers

Timing and Gate Operation

Timing operation is independent of Gate operation

Timing - Pros/Cons

Pros

- MAC Control operation is independent of Phy layer clocks
- Simplifies system operation
 - Simplifies the OLT operation
 - It decouples the gate transmission and timing
 - Gate msgs pass through the MAC control without modifications
 - Gate msgs can reach the ONU much ahead of transmission time allowing software implementation
 - Adds one additional register in ONU
- Keeps the gate allocation mechanism independent of the protocol operation

Cons

- Markers must be sent periodically
- Generates a Marker frame in real time

Summary

- Three clock domain models presented
 - Asynchronous clock domain
 - Downstream clock domain
 - Independent clock domain
- It is possible to get the similar timing accuracy with all three models
- The proposed timing approach simplifies the overall system operation

Clock Domain

- System performance increases marginally from Asynchronous- to Synchronous-clock domains
- System cost increases from Asynchronous- to Synchronous-clock domains

