Multi-Point Control Protocol (MPCP) Common Framework

Ajay Gummalla,

Ariel Maislos,

Bruce Tolley,

Dolors Sala,

Ed Boyd,

Glen Kramer,

Harald Kaaja,

Hiroshi Suzuki,

John Limb,

Lior Khermosh,

Olli-Pekka Hiironen,

Onn Haran,

Osamu Yoshihara,

Ryan Hirth,

Vincent Bemmel,

Yukihiro Fujimoto,

Broadcom

Passave

Cisco

Broadcom

Terawave

Alloptic

Nokia

Cisco

Broadcom

Passave

Nokia

Passave

NTT

Terawave

Alloptic

NTT

Scope of MPCP

 The Multi-Point Control Protocol (MPCP) specifies a control mechanism between a Master and Slaves units connected to a Point-to-Multi-Point (P2MP) segment to allow efficient transmission of data

 MPCP is defined within the MAC Control layer

Basic Characteristics

- Augment MAC-control interface for required functionality
 - Additional interface in MAC-control to enable/disable PHY transmission
- GATE/REPORT mechanism modeled similar to PAUSE
- Derive timing reference for the GATE start time
- Delay compensation mechanism
- AutoDiscovery done in shared regions

Basic Operation

- GATE and REPORT are control frames
- OLT sends GATE messages to ONU and guarantees no overlaps

GATE Operation

NOTE: Data path is shown in green;

Modifications of existing operation marked in blue;

- GATE message gates MAC-client delivery of frames.
- GATE operates exactly like PAUSE mechanism (generated in client and interpreted in MAC-control with indication to client at timeout time)
- ONU transmits only during the time indicated in the GATE
- ONU MAC-control enables PHY transmission at the start of a GATE duration and disables it at the end of the GATE duration

REPORT Operation

NOTE: Modifications of existing operation marked in blue

- REPORTs are generated in ONU MAC control client
 - Indicate local conditions to OLT
- REPORTs pass through the MAC-control
- REPORTs are optional

Design In Progress

- Details of timing mechanism
 - Relative timing vs. absolute timing
- Details of delay compensation
 - Compensate at OLT vs. compensate at ONU
- Details of Auto Discovery mechanism

Conclusion

- MPCP functionality and protocol layer is defined
 - Functionality belongs to MAC-control layer following the 802.3 architecture specification
- Significant progress has been made
 - Layer Architecture is defined
 - Details of the mechanisms are next step
- MPCP design and specification can be done in a timely manner

Presentations to follow...

- MPCP: Timing alternatives. Describes timing issues and compares absolute timing versus relative timing.
- MPCP: Time markers in the PHY. Describes advantages of using synchronization markers in PHY.
- MPCP: Non-intrusive synchronization in PHY. Describes a method of delivering timing and synchronization information without affecting data traffic.
- MPCP: A simple protocol specification. Specification of service interface and augmentation needed to define a simple protocol.
- MPCP: an EPON system II. This presentation covers the protocol proposal for a P2MP network with relative timing reference.

11/21/2001 9