MPCP: Time Markers in the PHY

Onn Haran, Passave Ariel Maislos, Passave

Introduction

- ☐ PHY marker is a new idle code
- **☐ In Upstream:**
 - Marker represents start of slot
- **☐ In Downstream:**
 - Marker represents a reference timer

What Do We Do With It? Upstream

- □ Accurately measure round trip delay
- **□** Passively monitor RTD
- □ Fault detection

RTD Measurement

- Upstream marker allows OLT to measure accurately round trip delay of ONU
- Measurement is independent of user traffic
 - Existence and transmission phase
- Measurement is continuous

Measuring Packet Arrival

Data-path timing is ambiguous and unreliable in 802.3

Fault Detection

- □ PHY marker allows to detect collisions
- **☐** Absence indicates collision in previous frame

Fault Detection 2

- Packet boundaries detection allow ambiguity
- □ Colliding frames appear the same as Idle frames at MAC client
- Fault state
 indistinguishable
 from correct state at
 MAC client

What Do We Do With It? Downstream

□ Distribute time base for MPCP layer

Timer Distribution

- Network time should relay on an exact octet counter
- Alternative: parsing in MAC control sublayer, introducing jitter

 Current jitter definition for parsing MAC control packet is specified for Pause as 1023 bits (clause

31B.3.7)

Conclusion

- PHY marker should be added to Downstream to distribute time accurately
- □ PHY marker should be added to Upstream to specify slot start event unambiguously