20km PON Link with a 1:16 Split What are the Possibilities?

Tom Murphy
Infineon Technologies
IEEE 802.3ah
Austin, TX. November 2001

Introduction

How to reach 20km link with 1:16 split. Cheap for the ONU side!

	OLT	ONU			
Downstream:	1490/1550nm DFB	-26dBm PIN			
Upstream ver 1:	-30dBm APD	DFB 1300			
Upstream ver 2:	-30dBm APD	FP temp controlled			
Upstream ver 3:	-30dBm APD	FP reduced data			
		rate			
Price/performance seems o.k. Focus of this document					

Overview options (only ONU Tx)

How to reach 20km

Upstream ver 1: DFB 1310nm

Upstream ver 2: Controlled temperature FP

Two linewidths: 2a) 2.8nm

2b) 2.0nm

Upstream ver 3: FP reduced data rate

Comparison of ONU Versions

1250Mbps link possible with ver 1&2, >622.5Mbps with ver 3

Comparison of ONU Versions

	Advantages	Disadvantages	
DFB	Reduced dispersion	Increased optics costs for ONU	
Temp. Cont.	No extra optics costs	Need temperature controller ¹	
Temp Cont.	Optics cheaper than DFB	Need temperature controller ¹	
Lower US BW	No extra optics costs	Reduced bandwidth for user	

ONU Cost Comparison for Three Options

2.8nm FP laser used as base cost factor

Upstream Option		Increased ONU Optics Costs Factor	Additional Costs
1)	DFB laser at 1310nm	2.5 ¹	0
2a)	2.8nm FP with Temp. Controller	1	0.5
2b)	2.0nm FP with Temp. Controller	1→2	1
3)	Reduced Upstream Line Rate	1	0

Reduced data rate most cost effective for end user

Summary

- Three different upstream options for 20km operation explored:
 - 1) DFB 1310nm laser
 - 2a) FP with 2.8nm linewidth, ±20°C
 - 2b) FP with 2.0nm linewidth, ±40°C
 - 3) FP with reduced data rate.
- Reduced data rate upstream the most cost effective for the end user
- Some open issues are:
 - > 500Mbps Ethernet
 - Acceptance of lower bandwidth upstream