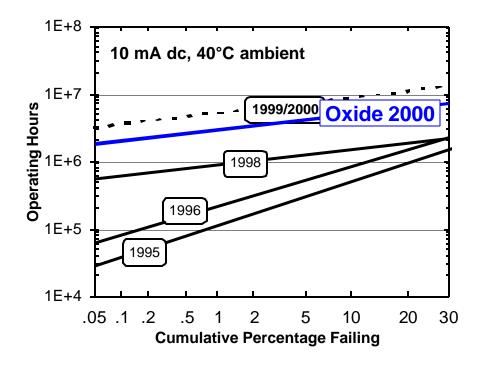
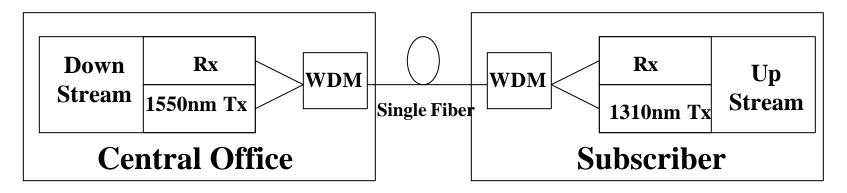
VCSEL Based Bi-directional (1310nm up, 1610nm down) links for IEEE802.3ah Applications


Dr. Jim Tatum
Honeywell VCSEL Products
830 E. Arapaho Road
Richardson, TX 75081
(972) 470-4572
jim.tatum@honeywell.com

VCSEL History (850nm)

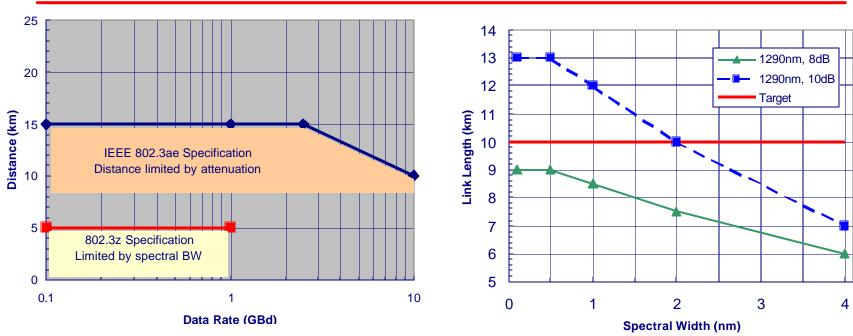

- Commercialized in 1996 by Honeywell
- Many millions of VCSELs in the datacom space today
 - Extremely high reliability
 - Excellent performance at speeds up to 10GB/s
 - Proven volume manufacturing
- Cost effective solution

FTTX Architectures

- Bidirectional (point to point)
 - Single fiber
 - Nearly unlimited bandwidth
 - Lowest cost optical components

- EPON (point to multipoint)
 - Broadcast dependencies
 - Costly optical components (both active and passive)

1310nm VCSELs


- Under development by several companies
 - Honeywell
 - Cielo
 - Infineon
 - Picolight
 - **■** Emcore
 - Others
- Material challenges are being overcome
- Commercialization is anticipated in 2002, some issues are:
 - Power
 - Single spatial mode
 - Temperature
 - Reliability

1300nm VCSEL State of the Art

- Operation to 125°C
- Maximum single mode power at room temperature ~1mW
- Reliability No published long term data
- Materials
 - InGaAsN/GaAs
 - InGaAsNP/GaAs
 - InGaAsNSb/GaAs
 - Highly strained InGaAs/GaAs

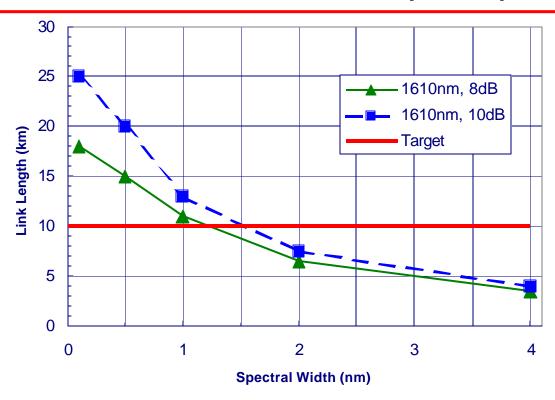
1300nm VCSEL Link Simulations (1GBd)

- Ways to increase the link distance
 - Increase power budget (Min Tx power launch, Rx sensitivity)
 - Reduce spectral bandwidth
- VCSELs can meet both of these
 - Min Power launched -8dBm
 - RMS spectral BW < 0.5nm
 - Links exceed 10km with lowest cost

Longer lengths achieved with increased power budget (12dB to get 20km)

1550nm VCSELs

- Under development by several companies
 - Honeywell
 - Bandwidth 9
 - Agility
 - Others
- Material challenges are being overcome
- Commercialization is anticipated in 2002, some issues are:
 - Power
 - Single spatial mode
 - Temperature
 - Reliability



1550nm VCSEL State of the Art

- Operation to 88 °C
- Maximum single mode power at room temperature ~1mW
- No published long term reliability
- Materials
 - InGaAlAs/InP
 - GaAsSb/GaAs
 - GaAsSb/GaSb
 - InGaAsP/InP
- VCSELs can be made across the wavelength span of 1490 to 1610
 - Link budget is nearly agnostic
 - To leave the C band open for future access, specifications could be written for either the L or S band

1550nm VCSEL Link Simulations (1GBd)

- Current IEEE 802.3ae specifications are overkill with regard to power budget (launch power) and requiring single mode sources
- 1550nm VCSELs can meet requirements for 20km links
- Wavelength range is from 1490-1610 (1610nm used as worst case

VCSELs.... Good to the Last Mile!

- Adopt flexible VCSEL friendly specifications for IEEE 802.2ah
 - Allows direct upgrade path from 100MB to 10GB
 - Multiple vendor support
- Key specifications for achieving 20km links (1300nm)
 - 1290-1350nm
 - 12dB power budget
 - ☐ Min power launched -7dBm
 - ☐ Min receive sensitivity -19dBm
 - 1nm spectral width
- Key specifications for achieving 20km links (1550nm)
 - 1490-1610nm
 - 10dB power budget
 - ☐ Min power launched -9dBm
 - ☐ Min receive sensitivity -19dBm
 - 1nm spectral width