High Performance EPON

Osamu Yoshihara Yukihiro Fujimoto Noriyuki Oota Noriki Miki

yoshi@ansl.ntt.co.jp
fujimoto@ansl.ntt.co.jp
oota@ansl.ntt.co.jp
noriki@ansl.ntt.co.jp

NTT Access Network Service Systems Laboratories

Outline

- 1. Requirements for High Performance
- 2. Possible Solution
- 3. Summary

Requirements for High Performance

- Should achieve high bandwidth efficiency
- Should achieve high throughput
 - Short RTT (Round Trip Time) is needed to yield high TCP throughput.

TCP Throughput vs. RTT

Short RTT realizes high TCP throughput.

 $MaximumTCP _ throughput = \frac{Window _ size}{RTT}$

IEEE 802.3ah, November 13-15, 2001

Possible Solution for High Performance

"Multiple Status Information" to shorten GATE spacing with keeping high efficiency.

- Short GATE spacing makes upstream delay low.
- ONU sends multiple buffering status information of logical port within a single REPORT message.

Multiple Status Information

- REPORT message holds multiple information on buffering status.
 - Total buffered size. (REPORT Type="Size of buffered frames #0")
 - Buffered size under limitation. (REPORT Type = "Size of buffered frames #1")
 - Other buffering status information. (option)

Transmitting
IEEE 802.3ah, November 13-15, 2001
—

Transmitting

Upstream bandwidth allocation example

: Single status information

When "Single status information" is used, OLT doesn't know the size of frames that will be transmitted.

Bandwidth wastage between ONUs is inevitable.

IEEE 802.3ah , November 13-15, 2001

Upstream bandwidth allocation example

- : Multiple status information
- OLT knows the size of frames that will be transmitted as "Size of buffered frames #1".
 - No bandwidth wastage between ONUs.

Comparison

(Multiple status information vs. Single status information)

High efficiency can be achieved by "Multiple status information"

TCP Performance

No. of ONU: 1

MAC Frame size: 1500octets

Propagation delay=0.1ms

(distance between OLT and ONU=20km)

Buffer size: 128 koctets

Limited buffer size: 1500 octets

High TCP throughput is achieved by keeping GATE spacing short.

IEEE 802.3ah , November 13-15, 2001

Summary

- Requirements for high performance
 - High bandwidth efficiency
 - Short RTT for high throughput
- Possible solution for high performance is shown.
 - "Multiple status information" realizes short GATE spacing and high efficiency.
 - It makes TCP throughput high.

