Clause 22 Access to Clause 45 Registers

802.3ah - November 2002 Don Pannell Marvell Semiconductor dpannell@marvell.com

Supporters of this Proposal

- Ed Turner, Lattice Semiconductor
- David Law, 3 Com
- Scott Simon, Cisco
- Hugh Barrass, Cisco
- Matt Squire, Hatteras Networks

- Kevin Daines, World Wide Packets
- Ulf Jonsson, Ericsson
- Ben Brown, AMCC
- Bradley Booth, Intel
- Vipul Bhatt

I'd like to thank all of these people for help with reviews and solutions to problems

Overview

- Clause 45 defined a new register access method with a larger address space
- Clause 45 was 1st used for new 10 Gig PHYs and MACs (802.3ae)
- Since both 10 Gig PHYs and MACs were new designs this approach worked well
- Clause 45 appeared to solve 802.3's register space problem forever (It didn't)

The Problem

- Most 802.3ah PHYs need to use the larger address space defined by Clause 45
- Most 802.3ah PHYs want to work with existing 10/100 MACs using MII for frame data & MDC/MDIO for register access
- Most Existing 10/100 MACs can't do Clause 45! They can only do Clause 22!
- Houston, we have a problem!"

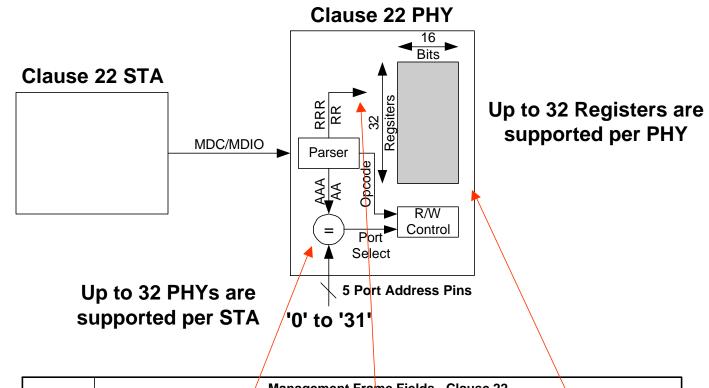
The Solution

- We need to define a standard way to access Clause 45 registers using Clause 22
- Using a standard 'backwards compatible' way to access Clause 45 registers <u>WILL</u> solve 802.3's register access problems for 802.3ah and beyond
- This must be defined <u>NOW</u> since there are only 2 unused Clause 22 registers left

The Implementation

Use Clause 22 Register 13 as a Clause 45 Command register

Use Clause 22 Register 14 as a Clause 45 Address/Data register

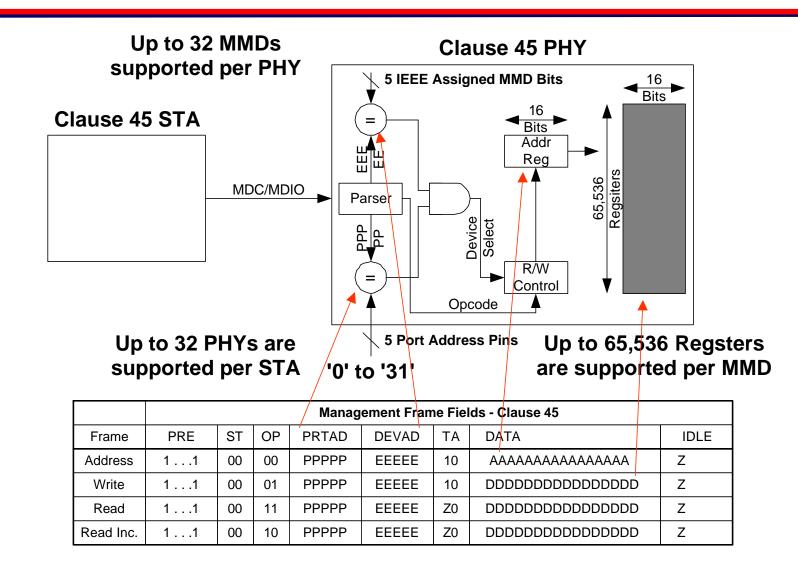

Clause 22 vs. Clause 45

Clause 22:

- 2 OpcodesRead & Write
- 32 Ports
- 32 Registers per Port

- Clause 45:
 - 4 Opcodes
 - I Address, Read, Write & Read Increment
 - 32 Ports
 - 32 Devices per Port
 - 64K Registers per Device

Clause 22 STA & PHY



				Manag	ement Fran	\backslash			
	PRE	ST	OP	PHYAD	REGAD	TA	DATA		IDLE
Read	11	01	10	AAAAA	RRRRR	Z0	DDDDDDDDDDDDDD	DD	Z
Write	11	01	01	AAAAA	RRRRR	10	DDDDDDDDDDDDD	DD	Z

Operation of Clause 22

To Read a Clause 22 Register Perform:
Read Register RRRR from PHY AAAAA
To Write a Clause 22 Register Perform:
Write Register RRRRR to PHY AAAAA
Each Operation Takes 1 Step

Clause 45 STA & PHY

10

Operation of Clause 45

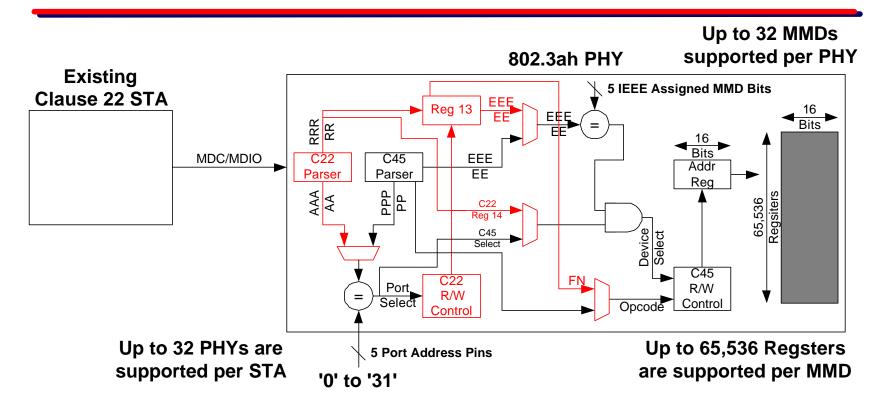
To Read a Clause 45 Register Perform:

- Write Address AAAAAAAAAAAAAAA to Device EEEEE on Port PPPP
- Read Register From Device EEEEE on Port PPPPP
- **To Write a Clause 45 Register Perform:**
 - Write Address AAAAAAAAAAAAAAA to Device EEEEE on Port PPPP
 - Write Register To Device EEEEE on Port PPPP
- Each Operation Takes 2 Steps

Clause 22 vs. Clause 45

	Management Frame Fields - Clause 22									
	PRE	ST	OP	PHYAD	REGAD	ТА	DATA	IDLE		
Read	11	01	10	AAAAA	RRRRR	Z0	DDDDDDDDDDDDDDD	Z		
Write	11	01	01	AAAAA	RRRRR	10	DDDDDDDDDDDDDDD	Z		

Same


Need to Map

	Management Frame Fields - Clause 45									
Frame	PRE	ST	OP	PRTAD	DEVAD	ТА	DATA	IDLE		
Address	11	00	00	PPPPP	EEEEE	10	ААААААААААААААА	Z		
Write	11	00	01	PPPPP	EEEEE	10	DDDDDDDDDDDDDDD	Z		
Read	11	00	11	PPPPP	EEEEE	Z0	DDDDDDDDDDDDDDD	Z		
Read Inc.	11	00	10	PPPPP	EEEEE	Z0	DDDDDDDDDDDDDDD	Z		

Mapping Using Reg 13 & 14

		15	14 1	3			5	4	0		
Clause 22 F	Register 1	3 F	FN Reserved					EEEEE			
00 = Address Reg 01 = Data Reg (no post increment) 10 = Data Reg w/Post Increment on reads & writes 11 = Data Reg w/Post Increment on writes only											
	Management Frame Fields - Clause 45										
Frame	PRE	ST	OP	PRTAD	DEVAD	TA	C	ATA		IDLE	
Address	11	00	00	PPPPP	EEEEE	10	ŀ	AAAAAAAAAAA	AAAAA	Z	
Write	11	00	01	PPPPP	EEEEE	10	D	DDDDDDDDDD	DDDD	D Z	
Read	11	00	11	PPPPP	EEEEE	Z0	C	DDDDDDDDDD	DDDD	D Z	
Read Inc.	11	00	10	PPPPP	EEEEE	Z0	C	DDDDDDDDDD	DDDD	D Z	
15 0 Clause 22 Register 14 Clause 45 Address or Data											

Clause 22 STA w/.ah PHY

Clause 22 Logic added to Clause 45 PHY is shown in RED

Clause 22 STA w/.ah PHY

- 802.3ah PHYs Respond to both Clause 22 Frames and Clause 45 Frames
- If Frame is Clause 22 the MUX'es select the RED signals
- If Frame is Clause 45 the MUX'es select the BLACK signals

Operation of C22 to C45

To Read a C45 Register C22 Perform:

- Write FN = Address & EEEEE to C22 Register 13 on Port PPPP
- Write FN = Data & EEEEE to C22 Register 13 on Port PPPPP
- Read Register From C22 Register 14 on Port PPPP
- Read Operation Takes 4 Steps

Operation of C22 to C45

To Write a C45 Register C22 Perform:

- Write FN = Address & EEEEE to C22 Register 13 on Port PPPP
- Write FN = Data & EEEEE to C22 Register 13 on Port PPPPP
- Write Register To C22 Register 14 on Port PPPP

Only the Last Step is Different from Read

C45 Set Address using C22

- Write OOxx..xxEEEEE to Clause 22 Reg 13
 Write AAAAAAAAAAAAAAAA to Reg 14
- Subsequent writes to Reg 14 continue to rewrite Device EEEE's address register until Reg 13 is modified
- Subsequent reads from Reg 14 return Device EEEE's current address register until Reg 13 is modified

C45 Write Data using C22

Write O1xx..xxEEEEE to Clause 22 Reg 13 Write DDDDDDDDDDDD to Reg 14

- Subsequent writes to Reg 14 continue to rewrite Device EEEE's data register pointed to by the last Set Address until Reg 13 is modified
- Subsequent reads from Reg 14 return Device EEEE's current data register pointed to by the last Set Address until Reg 13 is modified

C45 Read Data using C22

Write O1xx..xxEEEEE to Clause 22 Reg 13
 Read DDDDDDDDDDDD from Reg 14

- Subsequent reads from Reg 14 continue to reread Device EEEE's data register pointed to by the last Set Address until Reg 13 is modified
- Subsequent writes to Reg 14 write Device EEEE's current data register pointed to by the last Set Address until Reg 13 is modified

C45 Read Inc. using C22

- Write 10xx..xxEEEEE to Clause 22 Reg 13
 Read DDDDDDDDDDDD from Reg 14
- Read DDDDDDDDDDD from Reg 14 . . .
- Subsequent reads from Reg 14 read Device EEEE's next higher addressed data register (using post increment) until Reg 13 is modified
- Subsequent writes to Reg 14 write to Device EEEE's next higher addressed data register (using post increment) until Reg 13 is modified 21

New Write Inc. using C22

- Write 10xx..xxEEEEE to Clause 22 Reg 13Write DDDDDDDDDDDD to Reg 14
- Write DDDDDDDDDDD to Reg 14 . . .
- Subsequent writes to Reg 14 write Device EEEE's next higher addressed data register (using post increment) until Reg 13 is modified
- Subsequent reads from Reg 14 read Device EEEE's next higher addressed data register (using post increment) until Reg 13 is modified 22

New RMW Inc. using C22

- Write 11xx..xxEEEEE to Clause 22 Reg 13
- Read DDDDDDDDDDD from Reg 14
- Write DDDDDDDDDDD to Reg 14 . . .
- Subsequent writes to Reg 14 write Device EEEE's next higher addressed data register (using post increment) until Reg 13 is modified
- Subsequent reads from Reg 14 read Device EEEE's next higher addressed data register (<u>NO</u> post increment) until Reg 13 is modified

Reads to Reg 13 using C22

- A copy of Clause 22 Reg 13 exists in all MMDs in a Port (a write updates all copies)
- When a Read to Clause 22 Reg 13 occurs which MMD responds? (It doesn't matter which one since they are all the same)
- The MMD currently selected by Clause 22 Reg 13's EEEE bits (the DEVAD bits) is the only MMD to responds to Reg 13 Reads

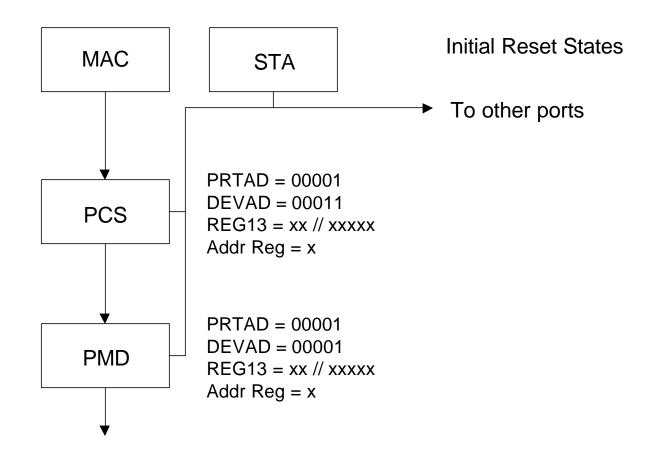
Benefits

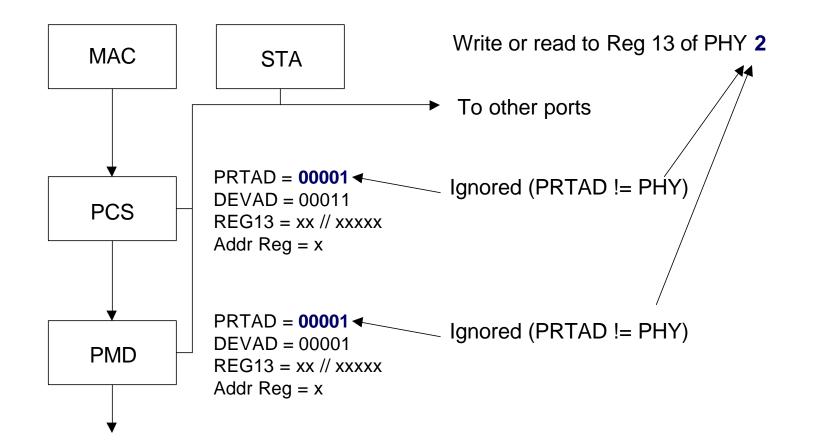
All Ports, Devices and Registers supported in Clause 45 are accessible to Clause 22 MDC/MDIO STA (station management entity) devices (typically MACs)

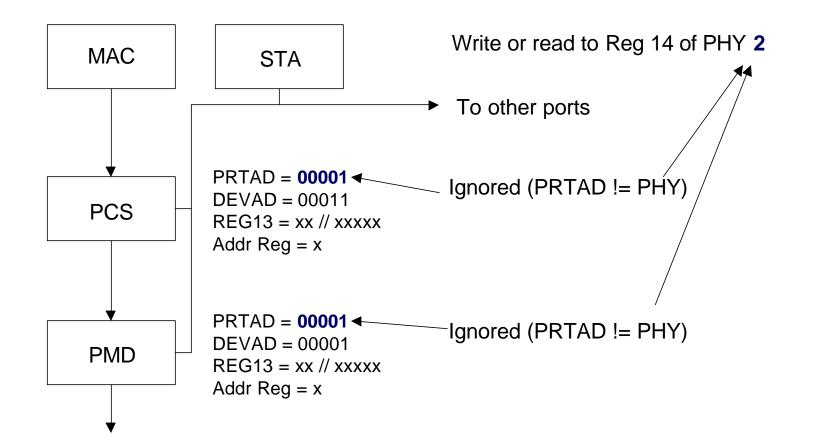
Clause 22 only devices can co-exist with Clause 45 devices that support this proposal (as long as they use Unique Port Addresses)

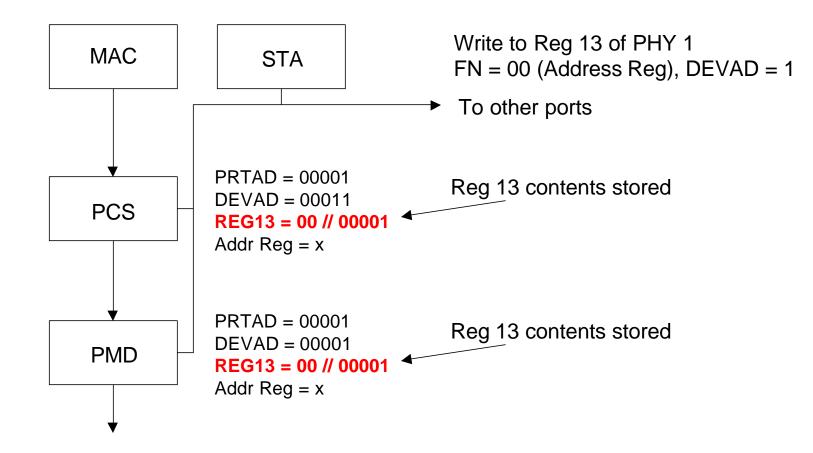
Who Does this Effect?

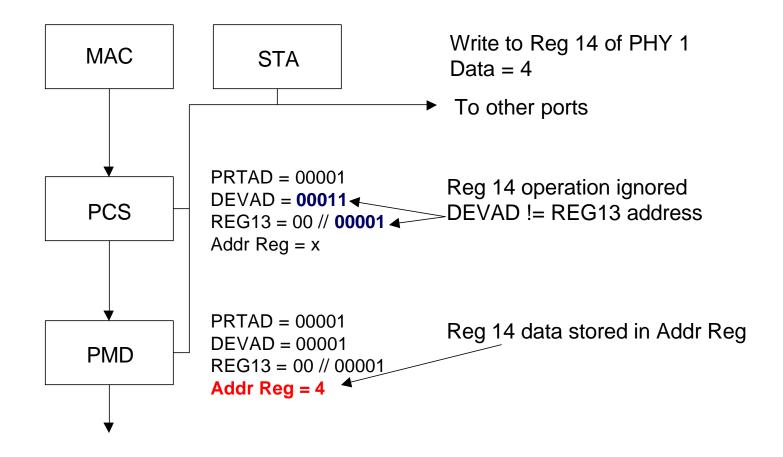
- Existing Clause 22 devices do not need to be modified (a major goal of this proposal)
- No modification of 802.3ae (10 Gig) Clause 45 devices
- New 802.3ah (EFM) Clause 45 PHY devices will need to work with Clause 45 MDC/MDIO STAs <u>AND</u> work with Clause 22 MDC/MDIO STAs using Registers 13 & 14

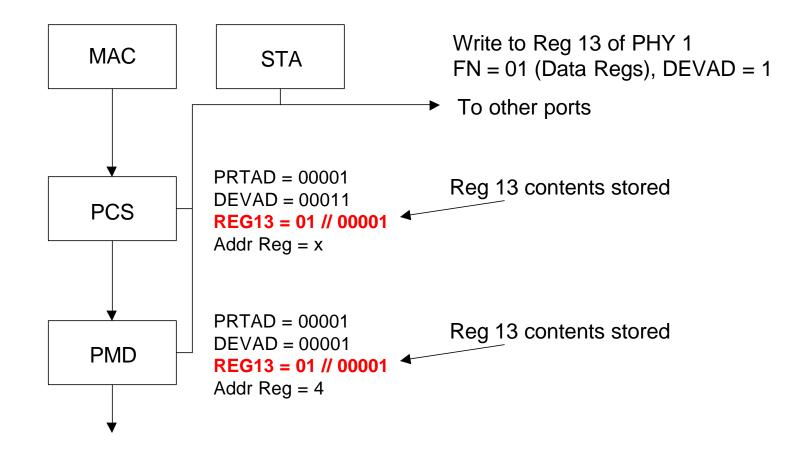

Summary

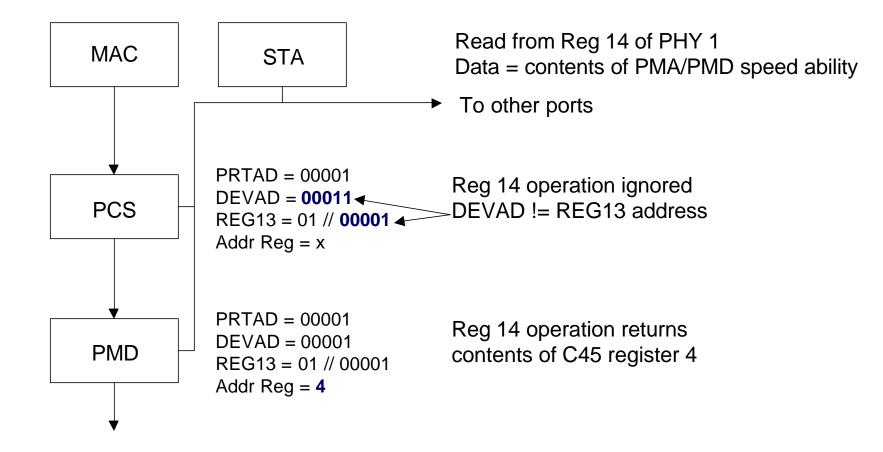

- This is our last chance to allow older CPUs and MACs to work with newer 802.3 PHYs
 - We are running out of Clause 22 Registers
- The MII data path is only 1/2 of the compatibility problem
 - Clause 22 MDC/MDIO STAs must work too!
- The Electrical Interface Levels in Clause 45 needs to be modified (to 3.3V tolerant)

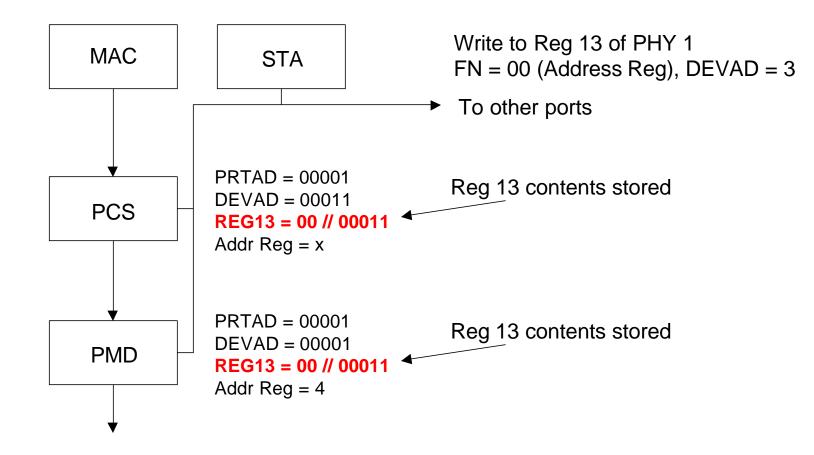

Thanks

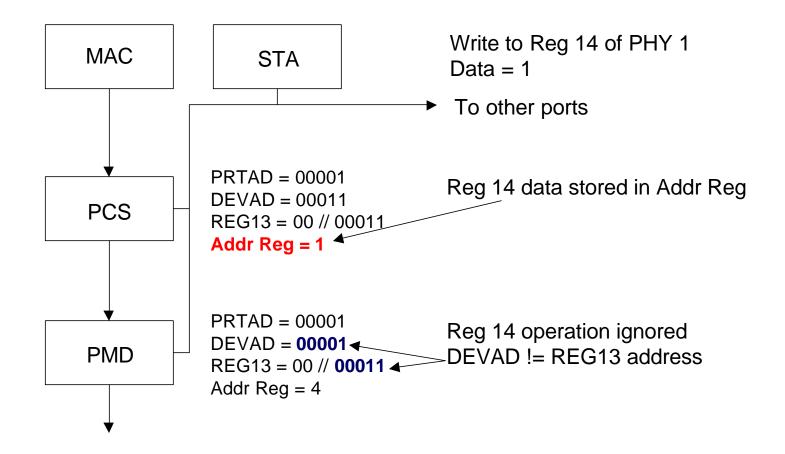

Appendix

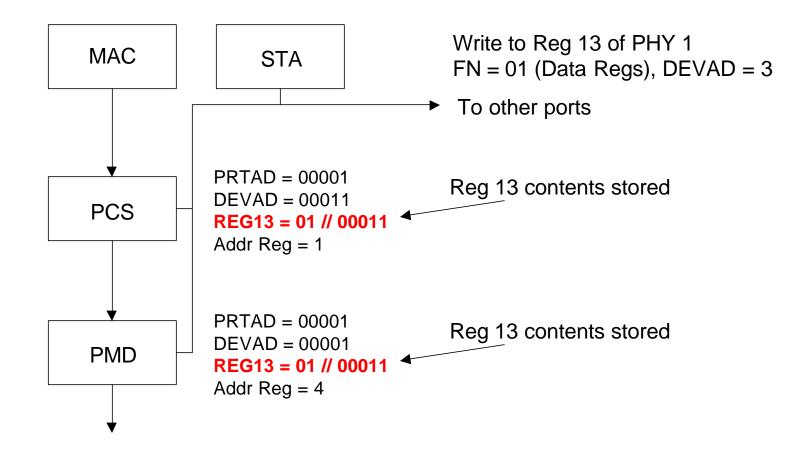

- Example of this proposal in action
- Port Address Issue
- Register 13 Opcode options why they are what they are

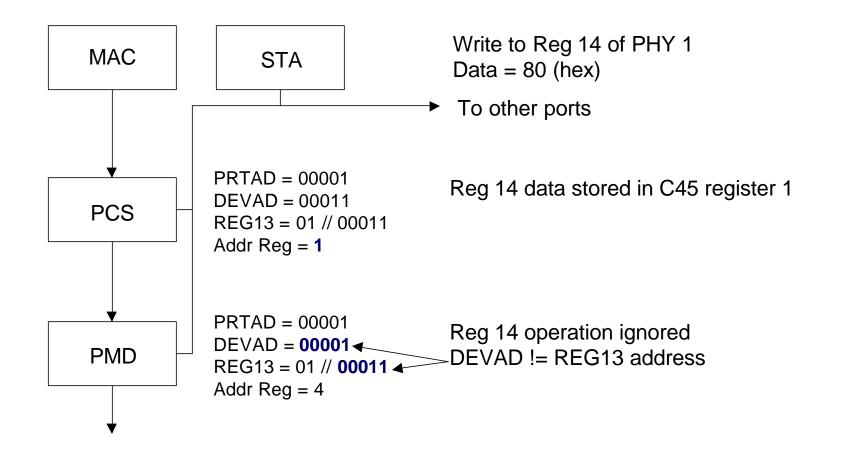


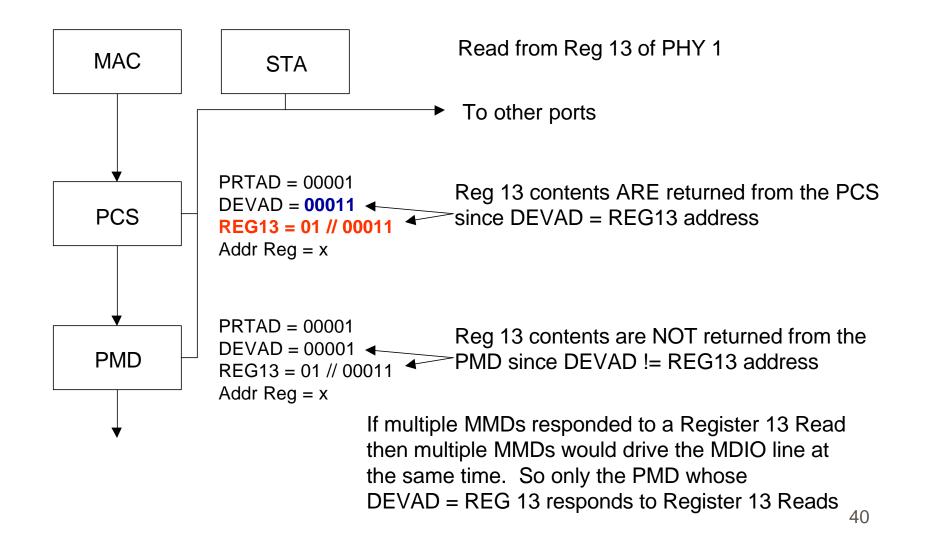


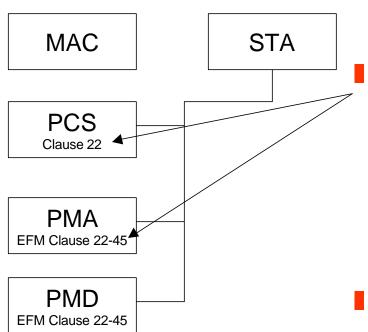












Port Address Issue

If PCS, PMA and PMD all use the same port address they must <u>all</u> support this proposal The Mixed Example Shown will <u>not</u> work if the PCS, PMA and PMD have the same port address

- The PCS will respond to Reg 13 reads corrupting Reg 13 reads from the PMA and PMD
- Resolution: In implementations where existing Clause 22 MMDs are mixed with new Clause 22 to 45 MMDs, it is required that the MMDs be on different port addresses

Reg 13 Opcode - 1st Try

Use an Opcode identical to Clause 45's

- 00 = Read/Write Address
- 01 = Read/Write Data
- 10 = Read/Write Data with post increment
- 11 = Read/Write Data
- The Options is RED are side effects not supported in Clause 45
- PRO = Uses same Opcodes as Clause 45
- CON = But they don't work the same due to the side effects & can't be made to work the same
- CON = Opcodes 10 & 11 are identical

Reg 13 Opcode - 2nd Try

Use Separate Post Inc & Addr/Data bits

- 00 = Read/Write Address (no post increment)
- 01 = Read/Write Data (no post increment)
- 10 = Read/Write Address (with post increment)
- 11 = Read/Write Data (with post increment)
- The Opcode in RED is a side effect that doesn't do anything or is the same as Opcode 00
- PRO = Independent functional bits
- CON = Opcode 10 does not make sense so it is either wasted or reserved

Reg 13 Opcode - 3rd Try

Call the Opcode bits Function bits as:

- 00 = Read/Write Address Register
- 01 = Read/Write Data (no post increment)
- 10 = Read/Write Data (with post increment on both reads and writes)
- 11 = Read/Write Data (with post increment on writes only)
- This is what is in the proposal
- PRO = All the functions of Clause 45 plus more
- PRO = FN 11 supports Read/Modify/Writes with post increment
- CON = Different Opcodes from Clause 45
- Solution: They are called FN (function) bits