A Flexible Architecture for EPON

Ajay Gummalla, Broadcom Harry Hvostov, Luminous Networks Curtis Knittle, Harmonic Inc John Limb, Broadcom Jean Charles Point, Com21 Hal Roberts, ADC Dolors Sala, Broadcom (Editor)

Goals

- Agree on a common architecture
- Minimal augmentation to operate 802.3 in PTMP topology
- Maximize commonality with point-to-point topology
- An architecture is proposed together with examples of algorithms.
- Recommendation of specific algorithms is next step

Connecting

everything™

Highlights of the Architecture

• Defines a centralized sharing system on top of Ethernet MAC

- Defines a gating mechanism between MAC and MAC client that controls how and when frames are presented to the MAC layer for transmission
 - Adds functionality at or above MAC-control layer
 - Amount of augmentation is flexible and can be decided based on desired interoperability level
- Adds hooks to gate PHY transmission of idles to control the burst mode operation
- No need of any new timing unit (I.e., slot, cycle,..) in PHY
- Solves compatibility issues by filtering frames

Minimum augmentation of PHY

- Allows a unified PON and PTP transceiver *
 - * Transceiver includes layers above PMD to MAC-control

Terminology

- OLT (Optical Line Terminator): Controller device at the central office of the EPON
- ONU (Optical Network Unit): Subscriber device in an EPON
- Allocator: OLT function that assigns bandwidth to ONUs in the EPON
- Service controller: Function to manage, monitor and control the services provided at the link level of the EFM network.
- Grant: Specifies an interval during which an ONU may transmit
- Grant request: Request for a grant sent by an ONU to OLT

Connecting

everything™

High Level Architecture

Minimum Augmentation

- Define a burst mode operation to control ONU transmission (i.e., stop idle transmission when not allowed to transmit)
 - PCS is configured in null state (no idle transmission)
 - PCS moves to transmit state during transmit period
 - Idles are transmitted between frames within a burst

ONU

Upstream Burst Mode Operation

• Implementation example:

- Propagation of transmit time from MAC-control to PCS
 - Start of transmit
 - Set Tx_enable signal, maps to
 - Wait signal in MAC, maps to
 - TX_EN, TX_ER reserved configuration
 - Change state of PCS to transmit state
 - End of transmit
 - Reset Tx_enable signal, maps to
 - Reset wait signal in MAC, maps to
 - TX_EN, TX_ER reserved configuration
 - Change state of PCS to null state

BROADCOM. 10/17/2001

Granting Mechanism

Basic Operation

OLT arbitrates access by assigning bandwidth

- The OLT informs the ONUs of grant assignments
 - A grant specifies the size of a region.
 - Regions dedicated to a particular ONU are specified with unicast grants
 - Ranging can be specified with broadcast grants (I.e., contention-based region) in order to allow plug-and-play of unknown ONUs
- The allocator is the OLT algorithm that decides the grant assignments
 - It must guarantee that grants assigned to individual ONUs do not overlap
 - It must reserve ranging regions to allow new ONUs to join
 - The particular algorithm is vendor specific and does not need to be standardized

ONUs transmit in assigned regions as specified in the grants

- ONU gates transmission (frames as well as idles) based on grants:
 - All transmission is blocked when no grant
 - All transmission is open during grant periods (idles occur during IFG)
- For robustness, the ONU does not transmit unless it receives the explicit grant for the region
- ONU MAC client decides what frames to transmit in each particular assigned grant
- ONU can request more grants as needed

Ranging

- Ranging is the process of measuring the differences in roundtrip delay between ONUs and OLT to prevent overlapping transmissions
- All devices (OLT and ONUs) in the network are synchronized to a common time reference
- The OLT clock is the common time reference.
 - OLT periodically broadcasts the clock timing (SYNC)
 - ONUs take this time as local time and adjust for round-trip delay (RTD)
 - Ranging process is used to estimate the time offset

• Example of Ranging Operation:

- OLT allocates grants for ranging
- ONU initiates ranging, sends a ranging request
- OLT computes round trip delay (RTD) based on arrival time of request within grant

BROADCO

10/17/2001

Connecting OLT sends to the ONU a response indicating the compensation time e v e r y t h i n g

Ranging Example

11

Request Mechanism

- The request mechanism is used to timely update the OLT of the ONU state so that OLT can dynamically adapt the bandwidth assignment
 - Request messages are generated by ONU and used by the OLT allocator

Convergence Issues

Convergence Layer

Convergence is supported by filtering mechanisms:

- Upstream broadcast frames
 - OLT filtering layer mirrors back the broadcast frames received on the upstream to the downstream
 - ONU filtering layer checks source address of broadcast frames and forwards only those with unknown address
- Peer-to-peer communication
 - OLT filtering layer forwards frames with destination address on the PON side to the downstream
- Flow control:
 - PAUSE of an ONU on the upstream is done through the allocation of grants
 - PAUSE of the OLT downstream transmission to an ONU
 - OLT must interpret PAUSE as unicast and must only PAUSE the ONU indicated in the source address

Properties of Proposed Compatibility Solution

- Compatibility is not a physical layer problem
 - No need for new concepts like physical layer addresses
- Retains 802.3 frame format on the wire
- Buffering frames in physical layer is not needed
- It can share filtering tables with 802.1 bridging tables if 802.1 is implemented

Specification

• At this stage, agreement on architecture is most important

• However, some example descriptions are available

High Level Architecture

Summary

- A flexible architecture with minimal augmentation of MAC and PHY is proposed
- It enables a single transceiver for PTP and PTMP topologies
 - No additional PHY headers nor additional framing
- Extended functionality added on top of existing 802.3 framework
 - Amount of augmentation added to be decided by 802.3ah committee based on level of interoperability desired.
 - Minimum augmentation specifies the upstream burst mode operation
 - Additional functionality can include:
 - Grant mechanism
 - Request mechanism
 - Ranging
 - Compatibility Layer
 - Link Security (not discussed here)

Recommendation

Agree on high level architecture first

Specify the following functions

- Request/Grant mechanism
- Ranging
- 802 Convergence
- Define a PON control layer with the above functions
- PON control layer should be placed above the MAC

