The Case for 200GbE

John D'Ambrosia, Dell

July 14, 2015

Acknowledgement

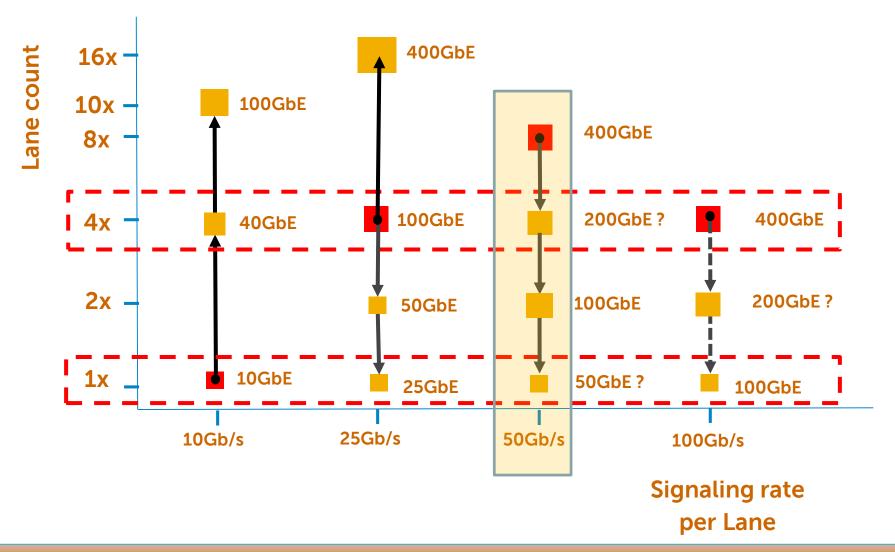
- Thanks to the following individuals for providing content
 - Kapil Shrikhande, Dell
 - Scott Kipp, Brocade
 - Ali Ghiasi, Ghaisi Quantum
 - Chris Cole, Finisar

From Nowell Deck, Flash Mob Meeting, 5/15

What: Scope of CFI 50 GbE (plus adjacent interests?)

Clear Scope:

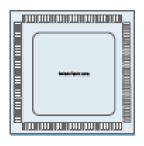
Single lane 50 GbE, server IO


<u>Potential adjacent interests that may incline some to want to broaden scope:</u>

- Single lane 40 GbE lower cost
- Other single lane options (25 GbE SMF, 100 GbE)
- 200 GbE
- Other nx50Gb/s options (100 GbE)

6

REASONS USED TO EXPLAIN 200 GbE


The New Rate Paradigm

Evolution using 50G SerDes

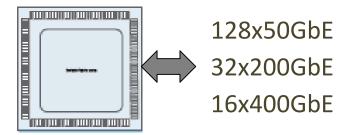
Next-gen switch ASIC

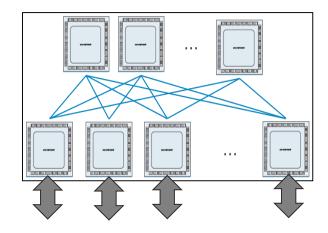
N x 50Gb/s SerDes chip

Radix

E.g. N = 128

128 x 40/50GbE 64 x 100GbE 32 x 200GbE

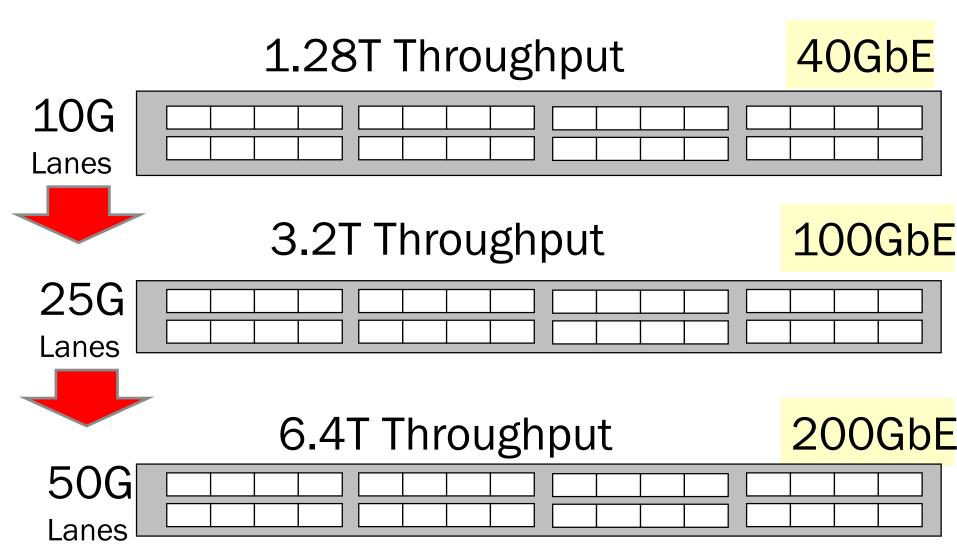

16 x 400GbE


- 50GbE Server I/O
 - Single-lane Speed > 25GE
- 200GbE Network I/O
 - Four-lane Speed > 100GE
 - Balances Radix v. Speed
- 200GE on same fiber optic cables as 100GE possible
- 4x50GE breakout possible
- DC scalability same as 25/100GE, 10/40GE designs

Ethernet ports using 50G SerDes

128x50Gb/s switch ASIC

- E.g. TOR configuration
 - 96x50GE + 8x200GE



Large port count Spine switch

= N*N/2, where N is switch chip radix N=32 \rightarrow <= 512x200GE Spine switch N=16 \rightarrow <= 128x400GE Spine switch

High port count of 200GE better suited for DC scale-out

Progression in Speeds

3 Stage Folded Clos with 100 GbE Supports Radix of 512

- 3 Stage Folded Clos with 200 GbE Supports Radix of 512
- Building block 3.2 Tb/s SOC (32x100GbE/128x25GbE)

Building block 6.4 Tb/s Switch SOC (32x200GbE/128x50GbE)

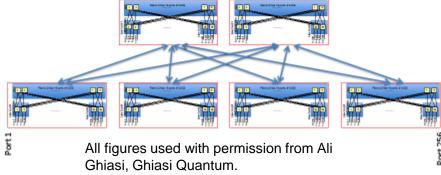
- 3 stage Clos with 51.2 Tb capacity

- 3 stage Clos delivers 104.4 Tb twice as if one would uses 400G links



3 Stage Folded Clos with 400 GbE only Supports Radix of 128

400 GbE Requires 5 Stage Clos to have Identical Capacity as 200 GbE


■ Building block 6.4 Tb/s SOC (16x400GbE/128x50GbE)

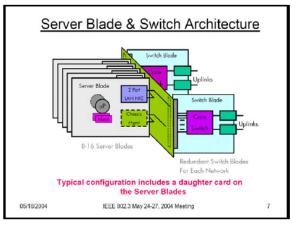
 400 GbE require 3x the switch SOC and 3x the interconnect to achieve 104.4 Tb capacity

 Implementation is multi-chassis requiring large number of SR-16/PSMx links

vith 200 GbE

A. Ghiasi Ghiasi-Quantum LLC ©

A. Ghiasi


Ghiasi-Quantum LLC ©

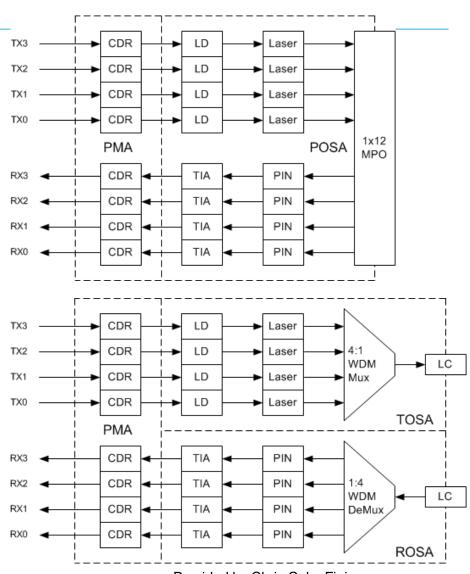
9

Backplane Applications

Backplane Ethernet & blade server architectures

- IEEE Std 802.3[™]-2008 defines GbE and 10GbE operation over a modular platform backplane (1 m objective)
 - 1000BASE-KX (GbE)
 - 10GBASE-KX4 (10 GbE, 4 x 3.125 GBd)
 - 10GBASE-KR (<u>serial</u> 10 GbE)
- Blade servers: 2nd Gen backplanes
 - · Based on 10GBASE-KX4 architecture...
 - ...but satisfy 10GBASE-KR channel requirements
 - IEEE Std 802.3ba[™]-2010 introduced 40 Gb/s operation on backplanes: 40GBASE-KR4 (4 x 10.3125 GBd)
- Blade servers: 3rd Gen backplanes
 - · Backwards compatibility needed
 - 100GbE must support 4 lane approach

Source: Koenen, "Channel Model Requirements for Ethernet Backplanes in Blade Servers", May 2004.

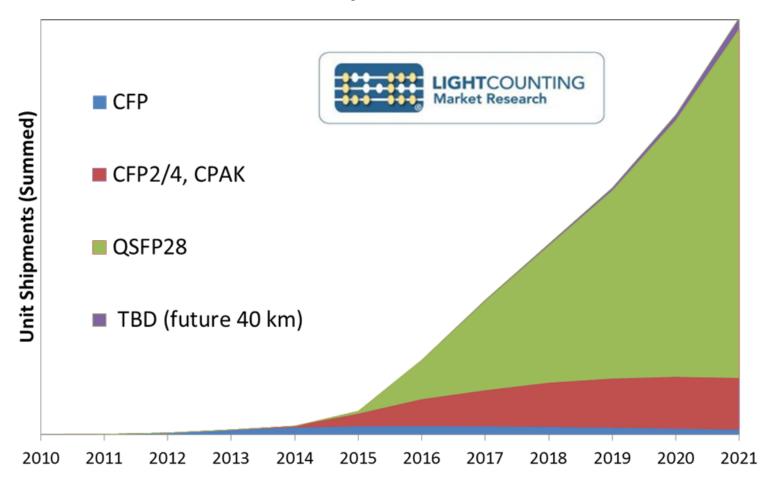

November 9, 2010

- 50G Serial would be used in backplane enclosures that would need to be backwards compatible with Backplane Ethernet Family, including 10/40/10 0GBASE-KR4 (KP4)
- x4 architecture supports x1, x2, and x4

13 100GbE Electrical Backplane/Cu Cable CFI IEEE 802 Plenary, Dallas, TX, Nov 2010

100G & 200G (MMF & SMF) QSFP Comparison

Block	100G	200G	New?
PMA IC	4x25G NRZ	4x50G PAM4	Yes
PMA Package	25G	25G	No
Laser Driver	Limiting	Linear	Yes
Laser	25G	25G	No
TOSA optics	4xWDM	4xWDM	No
TOSA package	25G	25G	No
PIN	25G	25G	No
TIA	Limiting	Linear	Yes
ROSA optics	4xWDM	4xWDM	No
ROSA package	25G	25G	No


Provided by Chris Cole, Finisar

100G & 200G (MMF & SMF) QSFP Comparison

- The major change in going from 100G to 200G QSFP (MMF or SMF) is the ICs: PMA, Driver, and TIA.
- Cost of 4x50G PAM4 ICs will approach cost of 4x25G NRZ ICs over time, as a function of volume and process shrinks
- Over time cost delta between 100G and 200G optics will be driven by delta in optical margin between 25GBaud NRZ & PAM4
- 200G optics will benefit from the volume of 100G optics because the packing and optical components are the same
- The cost of Gb/s of 200G optics will eventually be lower than cost of 100G optics

QSFP as a Recurring Thought

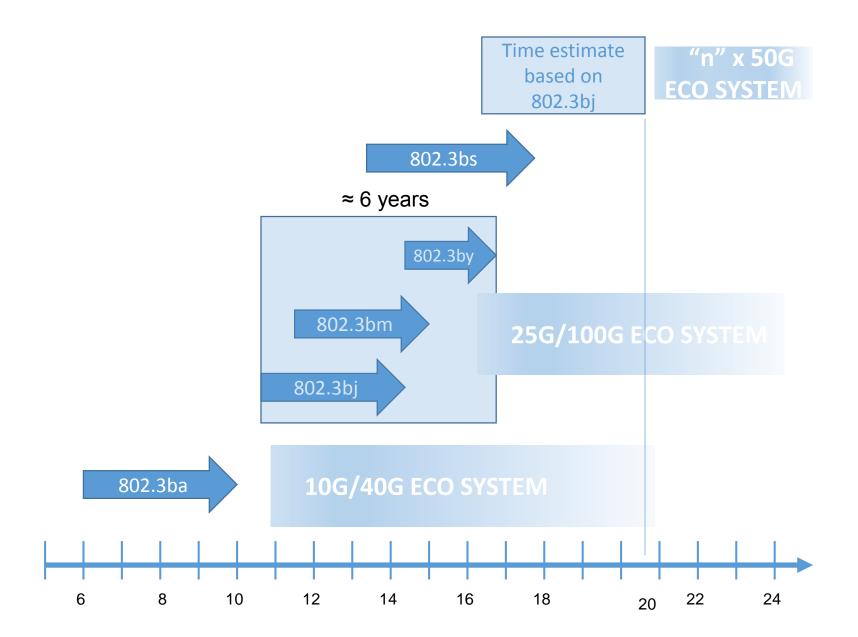
100 GbE by form factor

Competing Industry Efforts

- - 50GbE (HDR-Single Lane)
 - 200GbE (HDR x4 lane)
- Fiber Channel Roadmap (T11 Spec / Mktg Availability)
- (http://fibrechannel.org/fibre-channel-roadmaps.html)
 - 64GFC 56.1G x 1 (2017 / 2019)
 - 256GFC 56.1G x 4 (2017 / 2019)

Considering the Road Ahead

IEEE 802.3 Ethernet Technology Overview (JD Assessment)


		Existing Rates								New Rates		
Media		10G	25G	40G	40G (G2)	100G (G1)	100G (G2)	100G (Gn)	400G (G1)	400G (G2)	50G	200G
PCB Traces		1x10G	1X25G	4X10G	1x40G	10x10G	4X25G		16X25G 8x50G		1x50G	4x50G
ВР		1x10G	1X25G	4x10G	1x40G		4X25G				1x50G	4x50G
Cu Cable		1x10G	1X25G	4x10G	1x40G	10x10G	4X25G				1x50G	4x50G
MMF		1x10G	1X25G	4x10G	1x40G	10x10G	4X25G	2x50G 1x100G	16X25G	8x50G 4x100G ?	1x50G	4x50G
SMF	500m		1x25G		1x40G			?	4x100G (PAM4)		1×50G	4x50G
	2km		1x25G	1x40G	1x40G				TBD (8x50G WDM PAM4)	4x100G ?	1x50G	4x50G
	10km	1x10G	1x25G	4x10G WDM	1x40G	4x25G WDM			8x50G WDM (PAM4)	4x100G ?	1x50G	4x50G
	40km	1x10G		4x10G WDM		4x25G WDM						

Std or in progress

In Debate

Future

Time Frame Considerations (Rough Estimate)

Where do We Go?

- Enough examples to justify 200GbE's inclusion.
 - 200Gb solutions are happening, so 200GbE will happen
 - "200GbE Consortium" very plausible
 - For those of you who say no interest remember 40G for networking?
- Lots of things to do
 - How we "pile on" will have an impact on the schedule?
 - How we "divide and conquer" will have an impact on schedule?
 - How do we do everything faster?
- Develop a "n" x 50G family
 - Initial focus nAUI, backplane, twin-ax
 - Other initial focus for consideration MMF?
 - SMF initial work under way in 802.3bs