
1 Copyright © 2012 IEEE. All rights reserved.

102.2.2 Multipoint transmission control, Control Parser, and Control Multiplexer

The purpose of the multipoint transmission control is to allow only one of the multiple MAC clients to
transmit to its associated MAC and subsequently to the RS layer at one time by only asserting one
transmitEnable signal at a time.

transmitPending[0..n–1]

transmitInProgress[0..n–1]

Multipoint Transmission transmitEnable[0..n–1]

Control

Figure 102–6—Multipoint Transmission Control service interfaces

Multipoint MAC Control Instance n function block communicates with the Multipoint Transmission Control
using transmitEnable[n], transmitPending[n], and transmitInProgress[n] state variables (see Figure 102–4).

The Control Parser is responsible for opcode independent parsing of MAC frames in the reception path. By
identifying MAC Control frames, demultiplexing into multiple entities for event handling is possible.
Interfaces are provided to existing Clause 31 entities, functional blocks associated with MPCP, and the
MAC Client.

The Control Multiplexer is responsible for forwarding frames from the MAC Control opcode-specific
functions and the MAC Client to the MAC. Multiplexing is performed in the transmission direction. Given
multiple MCF:MA_DATA.request primitives from the MAC Client, and MA_CONTROL.request
primitives from the MAC Control Clients, a single MAC:MA_DATA.request service primitive is generated
for transmission. At the CLT, multiple MAC instances share the same Multipoint MAC Control, as a result,
the transmit block is enabled based on an external control signal housed in Multipoint Transmission Control
for transmission overlap avoidance. At the CNU, the Gate Processing functional block interfaces for
upstream transmission administration.

MCF:MA_DATA.indication (DA, SA, m_sdu_rx, receiveStatus)

opcode–specific function activation

Control Parser
timestampDrift

MAC:MA_DATA.indication(DA, SA, m_sdu_rx, receiveStatus)

Instances of MAC data service interface:
MAC=interface to subordinate sublayer
MCF=interface to MAC Control client

Figure 102–7—Control Parser service interfaces

2 Copyright © 2012 IEEE. All rights reserved.

Instances of MAC data service interface:
MAC=interface to subordinate sublayer
MCI=interface to MAC Control multiplexer

NOTE—MAC:MA_DATA.request primitive may be issued from multiple MAC Control processing blocks.

Figure 102–8—CLT Control Multiplexer service interfaces

MCI:MA_DATA.request(DA, SA, m_sdu_tx)

transmitAllowed Control Multiplexer (CNU)

MAC:MA_DATA.request(DA, SA, m_sdu_tx)

Instances of MAC data service interface:
MAC=interface to subordinate sublayer
MCI=interface to MAC Control multiplexer

NOTE—MAC:MA_DATA.request primitive may be issued from multiple MAC Control processing blocks.

Figure 102–9—CNU Control Multiplexer service interfaces

102.2.2.1 Constants

FEC_CODEWORD_SIZE
TYPE: integer
This constant represents the size of FEC codeword in octets (FEC_PAYLOAD_SIZE +
FEC_PARITY_SIZE).
Value: {TBD}

FEC_PARITY_SIZE

TYPE: integer

Control
Multiplexer (CLT)

transmitPending[n]

transmitInProgress[n]

transmitEnable[n]

MAC:MA_DATA.request(DA, SA, m_sdu_tx)

MCI:MA_DATA.request(DA, SA, m_sdu_tx) transmitAllowed

3 Copyright © 2012 IEEE. All rights reserved.

This constant represents the size of FEC codeword parity field in octets.
Value: {TBD}

FEC_PAYLOAD_SIZE

TYPE: integer
This constant represents the size of FEC codeword payload in octets.
VALUE: {TBD}

guardThresholdCLT
 TYPE: integer

This constant holds the maximum amount of drift allowed for a timestamp received at the CLT.
This value is measured in units of time_quantum.
VALUE: 12

guardThresholdCNU

TYPE: integer
This constant holds the maximum amount of drift allowed for a timestamp received at the CNU.
This value is measured in units of time_quantum.
VALUE: 8

MAC_Control_type

TYPE: integer
The value of the Length/Type field as defined in 31.4.1.3.
VALUE: 0x8808

tailGuard

TYPE: integer
This constant holds the value used to reserve space at the end of the upstream transmission at the
CNU in addition to the size of last MAC service data unit (m_sdu) in units of octets. Space is
reserved for the MAC overheads including: preamble, SFD, DA, SA, Length/Type, FCS, and
minimum interpacket gap. The sizes of the above listed MAC overhead items are described in
3.1.1. The size of the minimum IPG is described in 4A.4.2.
VALUE: 38

time_quantum

This variable is defined in 64.2.2.1.

tqSize
TYPE: integer
This constant represents time_quantum in octet transmission times.
VALUE: 20

Note that the list of constants will be updated per technical decision #44 (http://www.ieee802.org/3/bn/public/
decisions/decisions.html) once EPoC-specific FEC and PMD overhead details are settled.

102.2.2.2 Counters

localTime

TYPE: 32 bit unsigned
This variable holds the value of the local timer used to control MPCP operation. This variable is
advanced by a timer at 62.5 MHz, and counts in time_quanta. At the CLT the counter shall track the
transmit clock, while at the CNU the counter shall track the receive clock. For accuracy of receive
clock see Y.4.1.2. It is reloaded with the received timestamp value (from the CLT) by the Control
Parser (see Figure 102–12). Changing the value of this variable while running using
Layer Management is highly undesirable and is unspecified.

102.2.2.3 Variables

4 Copyright © 2012 IEEE. All rights reserved.

BEGIN

TYPE: Boolean
This variable is used when initiating operation of the functional block state diagram. It is set to true
following initialization and every reset.

fecOffset

TYPE: 32 bit unsigned
A variable that advances by PHY_DATA_SIZE after every 8×(PHY_DATA_SIZE +
PHY_OVERHEAD_SIZE) bit times (see EPoC de-rating equation 102-1). After reaching the
value of FEC_CODEWORD_SIZE, this variable is reset to zero. In the CLT, this variable is
initialized to 0 at system initialization. In the CNU, this variable is assigned in the GATE
Processing CNU Activation state diagram (see Figure 102–14).
NOTE—Notation fecOffset[1:0] refers to two least significant bits of this variable.

data_rx

TYPE: bit array
This variable represents a 0–based bit array corresponding to the payload of a received MPCPDU.
This variable is used to parse incoming MPCPDU frames.

data_tx

TYPE: bit array
This variable represents a 0-based bit array corresponding to the payload of an MPCPDU being
transmitted. This variable is used to access payload of outgoing MPCPDU frames, for example to
set the timestamp value.

grantStart

TYPE: Boolean
This variable indicates beginning of a grant transmission. It is set to true in the GATE Processing
Activation state diagram (see Figures 102-28b and 102–30) when a new grant activates. It is reset
to false after the transmission of the first frame in the grant (see Figure 102–14). This variable is
defined in CNU and, for TDD mode only, also in the CLT.

newRTT

TYPE: 16 bit unsigned
This variable temporary holds a newly–measured Round Trip Time to the CNU. The new RTT
value is represented in units of time_quanta.

m_sdu_rx

TYPE: bit array
Equal to the concatenation of the Length/Type and data_rx variables.

m_sdu_tx

TYPE: bit array
Equal to the concatenation of the Length/Type and data_tx variables.

m_sdu_ctl

TYPE: bit array
Equal to the concatenation of the MAC_Control_type and data_tx variables.

OctetsRemaining

TYPE: 32 bit unsigned
This variable is an alias for the expression (((stopTime – localTime) × tqSize) – tqOffset). It
denotes the number of octets that can be transmitted between the current time and the end of the
grant.

5 Copyright © 2012 IEEE. All rights reserved.

OctetsRequired
TYPE: 16 bit unsigned
This variable represents a total transmission time of next packet and is used to check whether the
next packet fits in the remainder of t h e transmission window. The value of OctetsRequired
includes packet transmission time, tailGuard defined in 102.2.2.1, and FEC parity data overhead.
This variable is measured in units of octets.

opcode_rx

TYPE: 16 bit unsigned
This variable holds an opcode of the last received MPCPDU.

opcode_tx

TYPE: 16 bit unsigned
This variable holds an opcode of an outgoing MPCPDU.

packet_initiate_delay

TYPE: 16 bit unsigned
This variable is used to set the time–out interval for packet_initiate_timer defined in 102.2.2.5. The
packet_initiate_delay value is represented in units of octets.

RTT

TYPE: 16 bit unsigned
This variable holds the measured Round Trip Time to the CNU. The RTT value is represented in
units of time_quanta.

stopTime

TYPE: 32 bit unsigned
This variable holds the value of the localTime counter corresponding to the end of the nearest grant.
This value is set by the Gate Processing function as described in 102.3.5.

timestamp

TYPE: 32 bit unsigned
This variable holds the value of timestamp of the last received MPCPDU frame.

timestampDrift

TYPE: Boolean
This variable is used to indicate whether an error is signaled as a result of uncorrectable timestamp
drift.

tqOffset

TYPE: 8 bit unsigned
This variable denotes the offset (in octet times) of the current actual time from the localTime
variable (which maintains the current time in units of time_quanta).

transmitAllowed

TYPE: Boolean
This variable is used to control PDU transmission at the CNU and at the CLT. It is set to true
when the transmit path is enabled, and is set to false when the transmit path is being shut down.
transmitAllowed changes its value according to the state of the Gate Processing functional block.

transmitEnable

TYPE: Boolean array
This array contains one element per each Multipoint MAC Control instance. Elements of this array
are used to control the transmit path in the Multipoint MAC Control instance at the CLT. Setting an
element to TRUE indicates that the selected instance is permitted to transmit a frame. Setting it to
FALSE inhibits the transmission of frames in the selected instance. Only one element of
transmitEnable should be set to TRUE at a time.

6 Copyright © 2012 IEEE. All rights reserved.

------- ----

transmitInProgress

TYPE: Boolean array
This array contains one element per each Multipoint MAC Control instance. The element j of this
array set to on indicates that the Multipoint MAC Control instance j is in the process of transmitting
a frame.

transmitPending

TYPE: Boolean array
This array contains one element per each Multipoint MAC Control instance. The element j of this
array set to on indicates that the Multipoint MAC Control instance j is ready to transmit a frame.

PHY_DATA_SIZE

TYPE: integer
The number of octets constituting the denominator in the EPoC de-rating Equation (102–1). To
normalize the effective data rate, the MPCP control multiplexer waits PHY_OVERHEAD_SIZE
octets per every PHY_DATA_SIZE octets transmitted.
Value: {TBD}

𝐵 = XGMII_Rate

PCS_Rate
= PHY_DATA_SIZE+PHY_OVERHEAD_SIZE

PHY_DATA_SIZE

 (102-1)

PHY_OVERHEAD_SIZE

 TYPE: integer
The number of octets constituting (together with PHY_DATA_SIZE) the numerator in the EPoC
de-rating Equation (102–1). To normalize the effective data rate, the MPCP control multiplexer
waits PHY_OVERHEAD_SIZE octets per every PHY_DATA_SIZE octets transmitted.
Value: {TBD}

Note that the list of variables will be updated per technical decision #44 (http://www.ieee802.org/3/bn/public/
decisions/decisions.html) once EPoC-specific FEC and PMD overhead details are settled.

102.2.2.4 Functions

abs(n)
This function returns the absolute value of the parameter n.

Opcode–specific function(opcode)

Functions exported from opcode specific blocks that are invoked on the arrival of a MAC Control
message of the appropriate opcode.

CheckGrantSize(length)

This function calculates the future time at which the transmission of the current frame (including
the FEC parity overhead) is completed.

CheckGrantSize(length) = fecOffset + length
--

FEC_PAYLOAD_SIZE
× FEC_CODEWORD_SIZE – fecOffset

NOTE—The notation x
nearest integer.

represents a ceiling function, which returns the value of its argument x rounded up to the

PMD_Overhead(length)

This function calculates the additional amount of time (in octet times) that the MPCP control
multiplexer waits following transmission of a frame of size ‘length’ by the MAC. The additional
time is added to allow the insertion of parity data into the frame by the PHY layer and to adjust
the data rate to the effective data rate supported by the PCS and PMD. PMD_Overhead() returns

7 Copyright © 2012 IEEE. All rights reserved.

the number of octets that the PHY inserts during transmission of a particular packet and its
subsequent IPG. Parameter ‘length’ represents the size of an entire frame including preamble,
SFD, DA, SA, Length/Type, FCS, and IPG. The following formula is used to calculate the
overhead:

PMD_Overhead(length, B) = 12 + �(B − 1) × length + B × �FEC_PARITY_SIZE × �
fecOffset + length

FEC_PAYLOAD_SIZE
���

NOTE – The notation x represents a celing function, which returns the value of its argument x rounded up to the
nearest integer.

 NOTE—The notation x
nearest integer.

represents a floor function, which returns the value of its argument x rounded down to the

select()

This function selects the next Multipoint MAC Control instance allowed to initiate transmission of
a frame. The function returns an index to the transmitPending array for which the value is not false.
The selection criteria in the presence of multiple active elements in the list is implementation
dependent.

SelectFrame()

This function enables the interface, which has a pending frame. If multiple interfaces have frames
waiting at the same time, only one interface is enabled. The selection criteria is not specified,
except for the case when some of the pending frames have Length/Type = MAC_Control. In this
case, one of the interfaces with a pending MAC Control frame shall be enabled.

sizeof(sdu)

This function returns the size of the sdu in octets.

transmissionPending()
This function returns true if any of the Multipoint MAC Control instances has a frame waiting to be
transmitted. The function can be represented as:
transmissionPending() =

transmitPending[0] +
transmitPending[1] +

... +
transmitPending[n–1]

where n is the total number of Multipoint MAC Control instances.

Note that the list of function will be updated per technical decision #44 (http://www.ieee802.org/3/bn/public/
decisions/decisions.html) once EPoC-specific FEC and PMD overhead details are settled. In particular, further
checks are needed for the function CheckGrantSize(), in relation to data rata adaption changes.

102.2.2.5 Timers

packet_initiate_timer
This timer is used to delay frame transmission from MAC Control to avoid variable MAC delay
while MAC enforces IPG after a previous frame. In addition, this timer increases interframe
spacing just enough to accommodate the extra parity data to be added by the FEC encoder.

102.2.2.6 Messages

MAC:MA_DATA.indication(DA, SA, m_sdu, receiveStatus)

The service primitive is defined in 31.3.

MCF:MA_DATA.indication(DA, SA, m_sdu, receiveStatus)

8 Copyright © 2012 IEEE. All rights reserved.

The service primitive is defined in 31.3.

MAC:MA_DATA.request (DA, SA, m_sdu)
The service primitive is defined in 31.3. The action invoked by this service primitive is not
considered to end until the transmission of the frame by the MAC has concluded. The ability of the
MAC control layer to determine this is implementation dependent.

MCF:MA_DATA.request (DA, SA, m_sdu)

The service primitive is defined in 31.3.

102.2.2.7 State diagrams

The Multipoint transmission control function in the CLT shall implement state diagram shown in Figure Z–10.
Control parser function in the CLT shall implement state diagram shown in Figure 102–11. Control parser
function in the CNU shall implement state diagram shown in Figure 102–12. Control multiplexer function in
the CLT shall implement state diagram shown in Figure 102–13. Control multiplexer function in the CNU
shall implement state diagram shown in Figure 102–14.

Note that Figure 102–13 and Figure 102–14 will be updated per technical decision #44
(http://www.ieee802.org/3/bn/public/decisions/decisions.html) once EPoC-specific FEC and PMD over-head
details are settled.

670 Copyright © 2012 IEEE. All rights reserved.

BEGIN

INIT

transmitEnable[0..n–1] ⇐ false

UCT

WAIT PENDING

transmissionPending()

ENABLE

j ⇐ select()
transmitEnable[j] ⇐ true

transmitInProgress[j] = false

DISABLE

transmitEnable[j] ⇐ false

Figure 102–10—CLT Multipoint Transmission Control state diagram

671 Copyright © 2012 IEEE. All rights reserved.

WAIT FOR RECEIVE

us) *
pe

 MAC:MA_DATA.indication (DA, SA,
Length/Type ≠ MAC_Control_type

PARSE TIMESTAMP
timestamp ⇐ data_rx[16:47]
newRTT ⇐ localTime - timestamp
timestampDrift ⇐ abs(newRTT - RTT) > guardThresholdCLT
RTT ⇐ newRTT

UCT

BEGIN

MAC:MA_DATA.indication
(DA, SA, m_sdu_rx, receiveStat
Length/Type = MAC_Control_ty

PARSE OPCODE

m_sdu_rx, receiveStatus) *

PASS TO MAC CLIENT

opcode_rx ⇐ data_rx[0:15] MCF:MA_DATA.indication(DA, SA, m_sdu_rx, receiveStatus)

opcode_rx ∉ {supported opcode} opcode_rx ∈ {timestamp opcode}
UCT

opcode_rx ∉ {timestamp opcode} *
opcode_rx ∈ {supported opcode}

INITIATE MAC CONTROL FUNCTION
Perform opcode specific operation

UCT

Instances of MAC data service interface:
MAC=interface to subordinate sublayer
MCF=interface to MAC Control client

NOTE—The opcode–specific operation is launched as a parallel process by the MAC Control sublayer, and not as
a synchronous function. Progress of the generic MAC Control Receive state diagram (as shown in this figure) is not
implicitly impeded by the launching of the opcode specific function.

Refer to Annex 31A for list of supported opcodes and timestamp opcodes.

Figure 102–11—CLT Control Parser state diagram

672 Copyright © 2012 IEEE. All rights reserved.

WAIT FOR RECEIVE

us) *
pe

 MAC:MA_DATA.indication (DA, SA, m
Length/Type ≠ MAC_Control_type

BEGIN

MAC:MA_DATA.indication
(DA, SA, m_sdu_rx, receiveStat
Length/Type = MAC_Control_t

PARSE OPCODE

_sdu_rx, receiveStatus) *

PASS TO MAC CLIENT

opcode_rx ⇐ data_rx[0:15] MCF:MA_DATA.indication(DA, SA, m_sdu_rx, receiveStatus)

opcode_rx ∉ {supported opcode} opcode_rx ∈ {timestamp opcode}
UCT

opcode_rx ∉ {timestamp opcode} *
opcode_rx ∈ {supported opcode}

PARSE TIMESTAMP
timestamp ⇐ data_rx[16:47]
timestampDrift ⇐ abs(timestamp - localTime) > guardThresholdCNU
localTime ⇐ timestamp

UCT

INITIATE MAC CONTROL FUNCTION
Perform opcode specific operation

UCT

Instances of MAC data service interface:
MAC=interface to subordinate sublayer
MCF=interface to MAC Control client

NOTE—The opcode–specific operation is launched as a parallel process by the MAC Control sublayer, and not as
a synchronous function. Progress of the generic MAC Control Receive state diagram (as shown in this figure) is not
implicitly impeded by the launching of the opcode specific function.

Refer to Annex 31A for list of supported opcodes and timestamp opcodes.

Figure 102–12—CNU Control Parser state diagram

673 Copyright © 2012 IEEE. All rights reserved.

674 Copyright © 2012 IEEE. All rights reserved.

INIT

transmitInProgress ← FALSE
transmitPending ← FALSE

BEGIN

MCI:MA_DATA.request(DA, SA, m_sdu_tx) * transmitAllowed

UCT

WAIT FOR TRANSMIT

SelectFrame()
transmitPending ← TRUE

TRANSMIT READY

(transmitEnable = TRUE) * (fecOffset < FEC_PAYLOAD_SIZE)

Length/Type = MAC_Control_type Length/Type ≠ MAC_Control_type

PARSE OPCODE
opcode_tx ← data_tx[0:15]

MARK TIMESTAMP
data_tx[16:47] ← localTime

opcode_tx ∈ {timestamp opcode} opcode_tx ∉ {timestamp opcode}

SEND FRAME
transmitInProgress ← TRUE
packet_inititate_delay ← PMD_Overhead(sizeof(data_tx)+tailGuard)
MAC:MA_DATA.request(DA, SA, m_sdu_tx)

START PACKET INITIATE TIMER
[start packet_initiate_timer, packet_initiate_delay]

UCT

packet_initiate_timer_done

CHECK SIZE

OctetsRequired ← CheckGrantSize(sideof(data_tx)+tailGuard)

OctetsRequired > OctetsRemainingOctetsRequired<= OctetsRemaining

675 Copyright © 2012 IEEE. All rights reserved.

Instances of MAC data service interface:
MAC=interface to subordinate sublayer
MCI=interface to MAC Control multiplexer

Figure 102–13—CLT Control Multiplexer state diagram

676 Copyright © 2012 IEEE. All rights reserved.

START OF GRANT
fecOffset ⇐ 16
grantStart ⇐ false

UCT

Le
ng

th
/T

yp
e
≠

M
A

C
_C

on
tro

l_
ty

pe

BEGIN

INIT
IdleCount ⇐ 0

transmitAllowed *
MCI:MA_DATA.request(DA,SA,m_sdu_tx)

 fecOffset[1:0] = 0* (grantStart + (IdleCount ≥ ResetBound))

TRANSMIT READY
SelectFrame()

!grantStart * fecOffset <
FEC_PAYLOAD_SIZE *
IdleCount < ResetBound

CHECK PACKET TYPE

Length/Type = MAC_Control_type

PARSE OPCODE

opcode_tx ⇐ data_tx[0:15]

opcode_tx ∈ {timestamp opcode} opcode_tx ∉ {timestamp opcode}

MARK TIMESTAMP

data_tx[16:47] ⇐ localTime

UCT

CHECK SIZE

OctetsRequired ⇐ CheckGrantSize(sizeof(data_tx) + tailGuard))

OctetsRequired ≤ OctetsRemaining OctetsRequired > OctetsRemaining

TRANSMIT FRAME
packet_initiate_delay ⇐ PMD_Overhead(sizeof(data_tx) + tailGuard)

MAC:MA_DATA.request(DA,SA,m_sdu_tx)

UCT

START PACKET INITIATE TIMER

[start packet_initiate_timer, packet_initiate_delay]

packet_initiate_timer_done

Instances of MAC data service interface:
MAC=interface to subordinate sublayer
MCI=interface to MAC Control multiplexer

Figure 102–14—CNU Control Multiplexer state diagram

