UPDATE THE PROPOSAL FOR PHY LINK CHANNEL FEC

Avi Kliger and BZ Shen

Submitted to PHY Link Ad-hoc group June 26th 2013

PLC CONSIDERATIONS

- Robustness: PLC must be received by new CNUs to enable joining the network
- CLT may select the channel to run at the best available part of the spectrum
- Must be very robust to worst case expected channel conditions for the new CNU
- Worst case SNR a modem can support (on the best available part of the spectrum
- Protect against notches in spectrum caused by reflections
- Plus some margin to protect against spurs
- Probably will not use frequencies subject to known external interference (LTE..)
- Protection against burst noise
- PLC is not interleaved with data
- PLC frame is separately spread over multiple symbols
- Codewords need to be long enough to overcome expected burst durations
- Codewords over the PLC frame should not be too long to not increase latency too much

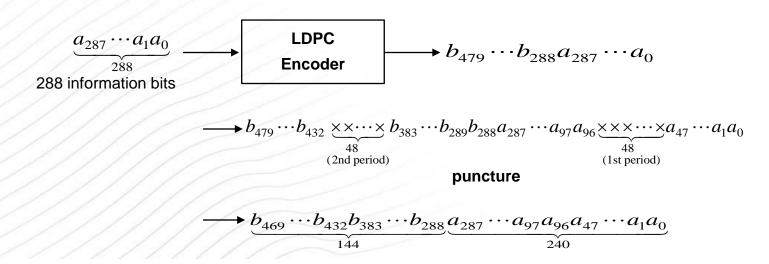
FEC ROBUSTNESS

AWGN

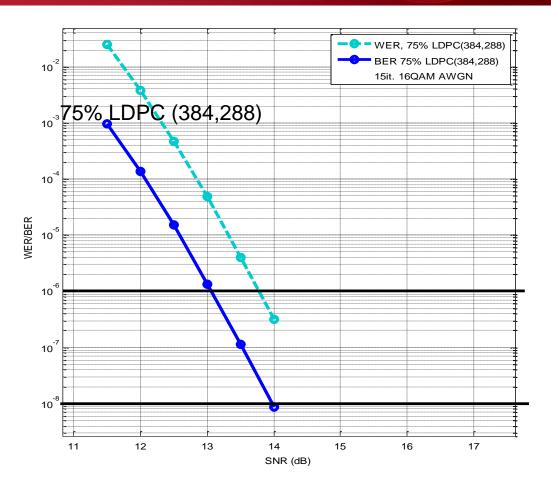
- 256-QAM requires an average SNR of 24 dB with no margin
- Worst case attenuation of a group of eight subcarriers due to SCTE 40 reflections is 4 dB
- Assume some margin for worse loops and/or spurs and/or additional margin taken ~ 4 dB
- Target SNR of ~ 16 dB to receive the PLC
- 16-QAM plus FEC with 75% code rate (effective PLC data rate is about 750 kbps with the lowest number of subcarriers)

Burst Noise

- Assume worst case burst noise limits of
 - 16 µs @ 5 dB SNR over two OFDM symbols
 - 10 μs @ 10 dB SNR over two OFDM symbols
- Two OFDM symbols may be impacted by the burst noise

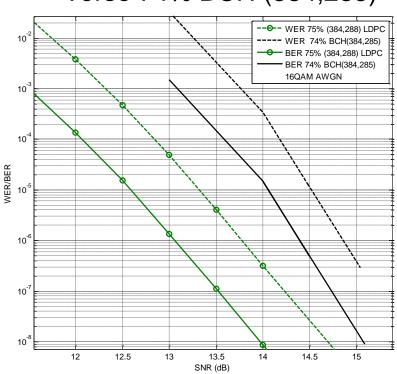

RATE 75% (384,288) LDPC CODE

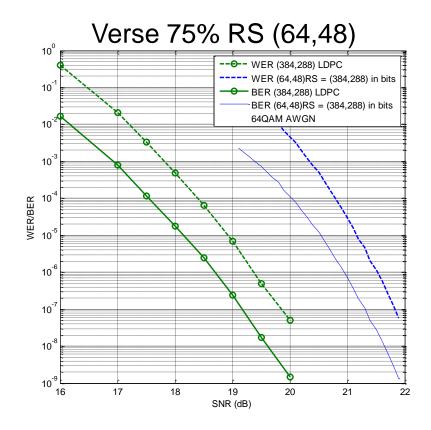
- 75% (384,288) binary punctured LDPC code
 - Mother LDPC code: 60% (480,288) code
 - 4x10 base parity check matrix with sub-matrix size (lifting value) equal 48.
 - Parity check matrix


16	1	28	9	40	38	16	-1	-1	-1
28	42	36	11	39	9	8	38	-1	-1
5	2	18	16	25	47	-1	2	19	-1
18	18	40	18	0	34	-1	-1	7	32

- (384, 228) code is obtained by puncturing (480,288) mother code
 - Two period puncturing
 - Period 1: size 48 start at 48 (puncturing information bits)
 - period 2: size 48 start at 384 (puncturing parity bits)

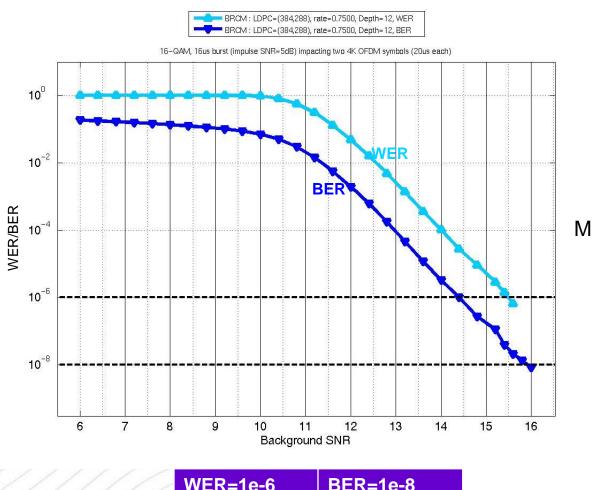
PERFORMANCE ON AWGN CHANNEL




WER=1e-6	BER=1e-8
13.8dB	14dB

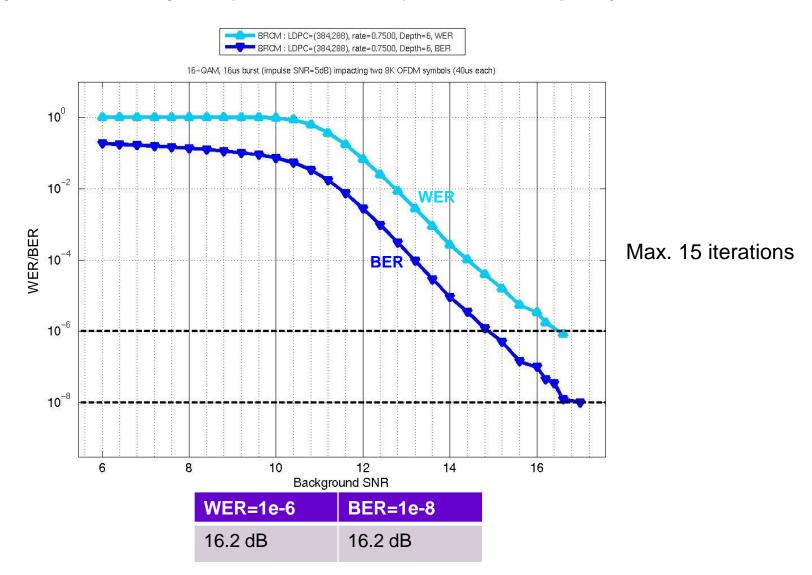
COMPARE TO CLASSICAL CODES

Verse 74% BCH (384,285)



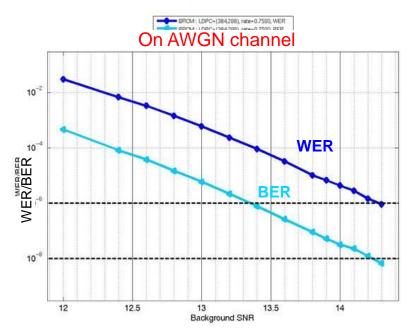
PERFORMANCE ON IMPULSE/BURST NOISE 16 µs burst with 5 dB burst SNR

12 symbol latency, Impulse noise impacts two 20 µs symbols

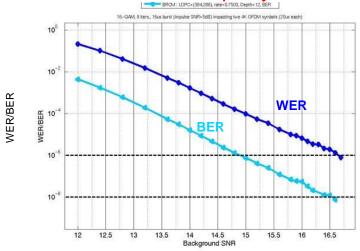

Max. 15 iterations

WER=1e-6	BER=1e-8
15.5dB	15.8dB

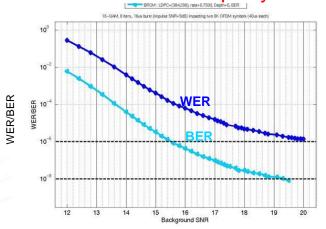
PERFORMANCE ON IMPULSE/BURST NOISE 16 µs burst with 5 dB burst SNR


6 symbol latency, Impulse noise impacts two **40 μs** symbols

REDUCING NUMBER OF ITERATIONS



The figures below show the performance with maximum 8 iterations



- BER< 1e-8 SNR = 13.5 dB with AWGN</p>
- BER< 1e-8 SNR = 15.5 dB with burst noise
- 1 dB degradation compared to 15 iterations

16us burst on two 20µs symbols

16us burst on two 40µs symbols

An LDPC code for the PLC is proposed

Code rates: 75%

Code latency: 270 uSec

- SNR = 13 dB to 16 dB with AWGN and Burst noise
- Complexity negligible (three orders of magnitude lower) compared to the downstream data decoder

STRAW POLL

 "Do you support to select the LDPC FEC presented at "802.3bn PHY Link Ad Hoc Conference Call June 19 and June 26, 2013" for the PLC FEC"

Thank You