PHY Link Channel PHY Acquisition Based on Continual Pilots

Nicola Varanese, Christian Pietsch, Juan Montojo (Qualcomm)

IEEE 802.3bn

PHY Frame Structure

- Symmetric pilots around center subcarrier
- Regular pilot symbols:
 - One pilot symbol on every subcarrier (could be made configurable)
 - Two consecutive OFDM symbols with regular pilots. These two symbols define subframe 0.
 - Repetition of regular pilots every 128 subframes
 - Used to obtain a reliable one shot estimate of the channel response
- Continual pilots:
 - One pilot symbol on every 128 subcarriers
 - Used to track/update the channel estimate that was obtained from the regular pilots until a new full blown channel estimate becomes available
- Pilot overhead:
 - Regular pilots: 1/128
 - Continual pilots: 1/128
 - Combined pilot overhead: 1/64 = 1.56%

- Consider the smallest available channel
 - 24MHz wide (512 subcarriers)
 - <u>4 continual pilots available</u> for acquisition
- Randomly generated channel
 - Unrealistic (pessimistic analysis): >30dB dynamic range
 - Used subcarriers

IEEE 802.3bn

- Carrier Frequency Offset (CFO)
 - Integer CFO
 - Fractional CFO

 $CFO = \mathbf{k}\Delta_{SC} + \delta$

- Searcher operation:
 - Time domain
 - Perform fractional CFO estimation and correction
 - Frequency domain
 - Search for continual pilots (integer CFO estimation)
 - Re-estimate fractional CFO
 - Searcher processes 12 consecutive symbols

- Searcher operation:
 - Frequency domain
 - Search for continual pilots (integer CFO estimation)
- Success probability:

IEEE 802.3bn

- Searcher operation:
 - Time domain
 - Perform fractional CFO estimation and correction
 - Frequency domain
 - Re-estimate fractional CFO

IEEE 802.3bn