Bandwidth drivers for 100 G Ethernet

Vik Saxena, Ph.D.

Sr. Director, Network Architecture CTO Office, Comcast Cable

Outline

Comcast Profile & Triple Play Offering

□ Network Overview

□ What is driving network bandwidth?

□ Where will we see high bandwidth requirements?

□Why 100GE?

Comcast Profile

Largest U.S. Cable Company > 40 Million homes passed 24 Million Basic Cable subs 12 Million Digital Cable subs 11 Million HSD subs 2 Million CDV subs

A Portfolio of Growing Cable Channels

Services Currently Supported by Network Infrastructure

New Unicast / Interactive Services on Roadmap

Growth in On-Demand Services

Growth in On-Demand Services

A Superior Hi-Def Experience

A Growing High-Def Offering

- Up to 20 Linear HD Channels Today... and Growing

Leveraging ON DEMAND

- 100+ Hours of HD ON DEMAND
- HD VOD Hours to Double in 2007 and Again in 2008

Blockbuster HD ON DEMAND

2 Million HD-VOD Views Since Launch

Network Infrastructure Segments: Backbone, Regional and Access

The Converged Regional Area Networks (CRAN) supports the delivery of multiple services over a common IP infrastructure

Able to support very high bandwidths and low price points required for video delivery

Able support low latency, minimal jitter and high reliability required to delivery quality voice services

Features

Provides a common pipe for the delivery of all services

□ Bandwidth can be allocated dynamically across services to accommodated demand changes

□ Supports a range of quality of services levels

Allows servers to be consolidated at a regional level

Benefits

□ Reduces the cost of transporting all services by up to 40% (In Greenfield deployment)

□ Allows Comcast to offer a variety of end customer service levels

□ The network architecture more scalable and futureproof minimizing future capital expenditure

□ Enhances operational efficiency by unifying operations

The backbone interconnects regional networks to create a unified national network

Comcast National Backbone Network

- Over 19,000 route miles of national fiber
- Covers 95+% of Comcast Homes Passed
- All major peering points
- Transport capability of >2500+ Gbps in 2006
- 40Gbps IP links in 2006
- •QoS based voice, video and data over IP

Features

Links all the regional networks into a unified network

Consolidates peering and interconnection with other operators

□ Managed QoS service delivery end-to-end with no thirdparties involved

Supports centralized management functions

Benefits

□ Very flexible and low cost linear and OnDemand video distribution

□ Backbone transport payments to transit providers reduced

□ Reduce overall operational costs and complexity by supporting centralization

□ Increased revenue opportunities by providing high quality, national end-to-end services

Opens up wholesale opportunities

VoD Adoption is Shaping New Network Needs

Architectural Drivers

- Rebuilds Push Fiber (FTTN)
- DOCSIS Enables Ethernet (ETTH)
- HSI Drives IP Foundation
- VoIP Drives Availability & dQoS
- VoD Sets Capacity & Economics
- TV & STB (DSG) Drive Huge Scale
- SIP/PCMM Shapes Future services

VOD streams for each Hub/OTN are distributed evenly between:

- Two downstream fibers (diverse paths) from HE to Hub/OTN
- > Two routers at Hub/OTN or two distinct ports on the same router

VOD streams for each Hub/OTN are distributed evenly between:

- Two downstream fibers (diverse paths) from HE to Hub/OTN
- Two routers at Hub/OTN (when available) or two distinct ports on the same router

Example of VOD Implementation

90% SD ~ 18,000 SD/ Dhub ~ 68 GE/ Dhub 10% HD ~ 2,000 HD/Dhub ~ 36 GE/ Dhub

50% SD ~ 10,000 SD/ Dhub ~ 38 GE/ Dhub 50% HD ~ 10,000 HD/Dhub ~ 180 GE/ Dhub

Limitations imposed by parallel nx10Gbps links

- Multiple ways to utilize parallel nx10G links
 - ≻ L3 ECMP
 - L2 Link-bundling
- Distribution of traffic over parallel links done via flow-based hash mechanism in both cases
 - Per-packet/round-robin distribution CANNOT be used due to packet re-ordering which results in significant drop in "goodput"
- Effectiveness of flow-based Hash distribution determined by traffic characteristics
 - Flow diversity large number of flows
 - Average bandwidth per flow determines number of flows that can be supported on any given link
- Flow-based hash mechanism CANNOT guarantee equal distribution of load
 - With ideal traffic characteristics it is statistically possible to uniformly distribute load over all links

Limitations imposed by parallel nx10Gbps links (continued)

- Effectiveness of load distribution depends on
 - Hash algorithm
 - Diversity of hash input (variability in SRC/DEST IP address)
 - Number of flows/size of flows
- □ Hash can result in un-equal load distribution
 - Caused by Non-ideal traffic characteristics such as:
 - Small distribution of src/dest IP addresses
 - High per-flow bandwidth
- Un-equal load distribution can results in under-utilization of available capacity
 - May potentially cause artificial congestion and packet loss
- 10x10Gbps is not the same as 1x100Gbps from a real throughput perspective
- □ How many parallel 10Gbps links do you need to match usable bandwidth on one 100Gbps link?
 - Depends on traffic characteristics...

□ There is a market need for 100GE

- Must standardize 100GE, pre-standard implementations are less accepted in the market
- Non-standard 40/80GE solutions will only slow 100GE development and adoption
- Providing a standard, cost effective solution is the best way to make 100GE successful

Thank You!

