

IEEE 802.3 *High Speed Study Group*100GbE Silicon Photonics Platform Considerations

Salah Khodja, PhD.

APIC's Optoelectronics Director Khodja@apichip.com

Outline

- 100Gbps technology options considerations
- Technical feasibility
 - 4x25Gb/s, 5x20Gb/s and 10x10Gb/s
- Silicon photonics challenges & opportunities
- Summary

Technology Options: Multiple Ways to 100GbE

• 4x25Gbps

- Optics Mux/demux compatible with LX4
- External modulator required for 25Gbs
- Traveling waveguide photodiode preferred
- Digital electronics challenging and expensive

• 5x20Gbps

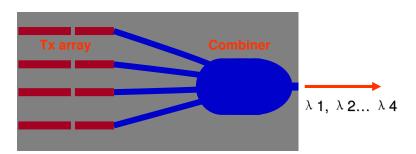
- Optics Mux/demux not a comment platform
- External modulator required for 20Gbs (less challenge)
- Digital electronics less challenging than first option

• 10x10Gbps

- Optics Mux/demux more loss and cost above
- 10 lasers on one chip, yield decrease,
- Direct modulation for 300m, external modulation for up to 40Km
- Digital electronic speed a commonality
- RF cross-talk need to be managed, reduce receiver sensitivity
- Power dissipation high, dictate package module type Xenpack

Technical Feasibility

Front-end photonics integrated circuit (PIC)


Key function	Material	Technology
Laser array	InP	VCSEL/Edge Emitter
Modulator array	InP /Silicon	EAM/MZI
Mux/Demux	InP /Silicon	Combiner/Interleaver/AWG
Receiver	InP	Surface PD/TWPD

- Back-end electronics
 - Laser drivers and transimpedance amplifiers (TIA's) could be hybrid integrated with PIC inside one package

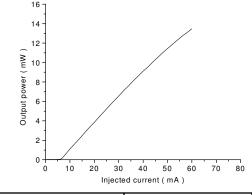
100GbE (4x25Gbps)

Function	4x25Gbps	Comment
Laser array	1300nm band	Un-cooled
Modulator array	InP EAM/MZI	Silicon up to10G today
PD array	Traveling Wave	40G demonstrated
Mux/Demux	CWDM	Compatible with LX4
	Interleave IL<3dB	
	PDL<0.4dB	
Driver and TIA array	SiGe/GaAs	Expensive
Chip foot print Transmitter/receiver	3x4mm ²	Xenpack

4x25Gbps Transmitter

IEEE 802.3 HSSG, Jan 17 - 19, 2007, Monterey, Ca

100GbE (10x10Gbps)

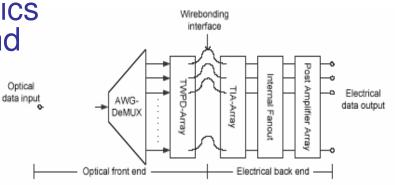

- Attractive, direct WDM expansions of main stream 10GbE
- Present challenge for laser and PD arrays yield
- WDM channel spacing 100GHz vs. 200GHz
 - Single chip WDM laser array
 - 100GHz yield low very
 - 200GHz yield higher, more economical
- Silicon array waveguide gratings (AWG)
 - IL around 6dB
 - PDL ~0.4dB
- RF cross-talk reduce receiver sensitivity
- Benefits from 10GbE standard

100GbE (10x10Gbps)

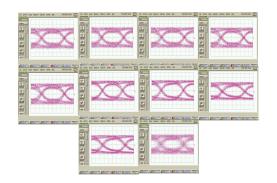
Power dissipation and wavelength accuracy

- Module power budget
 - laser array power dissipation become very important
- WDM wavelength accuracy
 - DFB/DBR laser grating fabrication pitch resolution tolerance very challenging +/- 0.01nm for100 GHz channel spacing

	1570 - 1565 -							4		/
	1303						_	<u> </u>		
Ē	1560 -					,	•			
5	1555 -				,					
elength	1560 - 1555 - 1550 - 1545 -		•	•						
/av	1545 -		í							
>	1540	•								
	1535	- <u>-</u> -								
	0	2	4	6 Ch	8	10 Num	12	14	16	18
				unai	шег	Num	Der			


Channel Number	Threshold current (mA)	Operating voltage at bias of 40 mA (V)	Slope efficiency (mW/mA)	
1	7.2	1.10	0.23	
2	7.2	1.09	0.26	
3	7.2	1.09	0.26	
4	7.3	1.09	0.25	
5	7.4	1.09	0.25	
6	7.2	1.09	0.25	
7	7.2	1.10	0.25	
8	7.1	1.22	0.25	
9	6.9	1.13	0.28	
10	6.8	1.14	0.25	

IEEE 802.3 HSSG, Jan 17 - 19, 2007, Monterey, Ca



100GbE (10x10Gbps)

- Hybrid integration of silicon photonics demux, photodiode array (PDA) and digital electronics
- Demux
 - loss 6dB
 - PDL ~ 0.4dB
- RF cross-talk need to be managed
 - Reduce receiver sensitivity
 - Dark current 0.1uA (~nA single ch.)
- High sensitivity to ground
- ESD issue

Functional block diagram NxnGb/s receiver

100GbE (10x10Gb/s) WDM eye diagrams

Benefits of Silicon PIC

- Lower cost Mux/Demux, lower than PLC
- Smaller footprint size
- Ability to integrate optics and electronics inside one small package
- 100G on XFP size module?

Technical Feasibility of 100GbE

Front-end photonics integrated circuit (PIC)

Key function	4x25Gbps	5x20Gbps	10x10Gbps
Laser array	DFB/DBR	DFB/DBR	DFB/DBR
	1300/1550nm	1300/1550nm	1550nm
Modulator array	Ext. Mod.	Ext. Mod.	DML/
	EAM/MZI	EAM/MZI	EAM/MZI
Mux/Demux	Combiner/Interleave	Combiner/Interleave	AWG
		/AWG	
PD array	Traveling wave PD	Traveling wave PD	PD/APD
CWDM/WDM	CWDM	CWDM	WDM, 200GHz

Summary

- Issues to consider
 - Power dissipation limit desirable module type
 - Integrated WDM channels cross-talk
 - RF cross-talk is more severe than optical
- 4x25Gbps is a valuable solution for 100Gbps
 - PIC mux/demux compatible with LX4
- 10x10Gbps attractive, benefits from 10GbE standard
 - Present challenge for laser diode and PD arrays yield
 - Electronic cross-talk
- Silicon photonics platform could provide cost effective solution to make 100Gbps successful