

4 x 25 G WDM of 200 GHz Grid for Both 10 km & 40 km Distance Objectives

Wenbin Jiang, DC Sun, EJ Mao IEEE 802.3 HSSG Geneva, May, 2007

Background

- Laser transmitter spectral width broadens when modulated due to
 - Intrinsic Modulation bandwidth
 - Chirping
- Dispersion penalty increases due to increased spectral width
- 4x25G CWDM PMD is subject to large dispersion penalty over 10km single mode fibers

Spectral Width Broadening due to Modulation @ 10G

20dB Δλ RMS 0.06nm @ CW

20dB Δλ RMS 0.06nm @ CW

20dB Δλ RMS 0.10nm @ 10G

20dB Δλ RMS 0.21nm @ 10G

EML

DML

Spectral Width Broadening Trend to 25G

EML spectral width broaden to around 0.2 nm @ 25G DML spectral width is projected to be around 0.4 nm @ 25G

SMF-28 Dispersion

$$D_{\lambda} = S_0/4(\lambda - \lambda_0^4/\lambda^3)$$

Where

$$S_0 = 0.092 \text{ ps/(nm}^2 \text{ km)}$$

$$\lambda_0 = 1302 - 1322 \text{ nm (spec by Corning)}$$

Dispersion Induced Bit Rate & Distance Limitation

Reference

G. P. Agrawal, Fiber-Optic Communication Systems, John Wiley & Sons, Inc., 1997

Optical source with a large spectral width:

$$BL|D|\sigma_{\lambda} \le \frac{1}{4} \tag{5.2.2}$$

Optical source with a small spectral width:

$$B(|\beta_2|L)^{1/2} \le 1/4 \tag{5.2.3}$$

Where

B is bit rate

L is distance

D is dispersion coefficient

 σ_{λ} is RMS spectral width

 β_2 is GVD parameter and relates to *D* by

$$D = -(2\pi c/\lambda^2)\beta_2$$

Assumptions

- 1. Gaussian pulse (a narrower shaped pulse, such as super-Gaussian, broadens faster.)
- 2. Chirp negligible (DML is typically negatively or down chirped, and broadens faster.)
- 2. Wavelength away from zero-dispersion wavelength

CWDM Wavelengths around Zero Dispersion Wavelength

IEEE:

- 1275.7 nm, 1300.2 nm, 1324.7 nm, 1349.2 nm
 - Channel bandwidth 13.4 nm
- Wavelength range: 1269.0 nm 1355.9 nm
 - Span of 86.9 nm

ITU:

- 1291 nm, 1311 nm, 1331 nm, 1351 nm
 - Channel bandwidth 13 nm
- Wavelength range: 1284.5 nm 1357.5 nm
 - Span of 73.0 nm

RMS Spectral Width Requirement vs. Wavelength for 10km and 40km with Large Spectral Width Source @ 25 Gbps

Assuming Nominal Fiber Minimum Dispersion Wavelength @ 1310 nm

Spectral width for CWDM

	10 km	40 km			
IEEE	0.25 nm	0.06 nm			
ITU	0.24 nm	0.06 nm			

- CWDM does not support 40km
- Only EML supports10km

Distance with a Small Spectral Width Source @ 25G

4 x 25G CWDM PMD supported distance is limited to around 25 km

Proposal

- Narrow grid 4 x 25G WDM around the minimum dispersion wavelength is required to support the HSSG 40km distance objective to overcome dispersion limit
 - Propose 200 GHz WDM grid for the transmitters
 - Allow to use one EML design with temperature tuning to cover all four wavelengths, thus achieving higher laser volume for lower cost
 - 400 GHz grid as an alternative is possible, but requires either larger temperature tuning range for two laser chip design
 - SOA pre-Amp + PIN for the receiver
- EML is required to marginally support the HSSG 10km distance objective with the 4 x 25G CWDM PMD option
 - Propose to adopt the same WDM grid as the 40km PMD
 - Increase the total volume base with the combined 10km & 40km market demand
 - Enable DML for the 10km distance objective for future lower cost potential
 - Allow to use one EML/DML design with temperature tuning to cover all four wavelengths, thus achieving higher laser volume for lower cost
 - PIN for the receiver

4x25G Optical Module Block Diagram --- 1st Gen

4x25G Optical Module Block Diagram --- 2nd Gen

Alternative Conceptual 4x25G Optical Module for 40 km

25 G Transmitter Optical Assembly

200 GHz Grid for WDM with Temperature Tuning

25G Eye Diagrams over Temperatures

25G Transmissions over 10 km SMF

1m 10km

Commercially Available SOA Spec from a Vendor

Parameter	Symbol	B-type			L-type			Unit
		Min.	Typ.	Max.	Min.	Typ.	Max.	Cint
Drive Current	I_{F}		250			250		mA
Peak Wavelength	λ_p	1280		1340	1280		1340	nm
3 dB Optical Bandwidth	$\Delta \lambda_{3dB}$	55			45			nm
Small Signal Gain @ λ _p	G _{max}	13	16		18	22		dΒ
Gain Ripple with Respect to λ	ΔG		0.5	1.0		0.5	1.0	dΒ
Saturation Output Power	P_{sat}	10				10		dBm
Polarization Dependent Gain	PDG		0.5	1.0		0.5	1.0	dΒ
Noise Figure	NF		7	7.5		7	7.5	dΒ

One SOA may cover all four wavelengths with 200 GHz WDM grid

