

Market, Technical, Cost and Solution Considerations for HSSG

Jan Peeters Weem, Gopal Hegde, Tom Mader Intel Corporation

Outline

- Key Messages
- HSSG Market Requirements
- HSSG Technical Feasibility
- HSSG Cost Considerations
- HSSG Solution Considerations
- Summary

Key Messages

- HSSG should target 100GbE as the next speed bump for Ethernet
 - Needed to get ahead of next generation platform requirements
 - Lower speeds (e.g. 40 GbE) will not be enough
 - HSSG should also address blade backplanes along with data centers, metro and long haul networks
- 100Gb/s Technology is feasible today
 - 40G (OC768) shipping today in volume
 - Optical technology exist today
- Datacom apps likely to drive next generation Ethernet speeds
 - Cost effectiveness of the solution is key for deployment
 - Shorter reach optics for data centers → lowered optics costs

I/O scales with Moore's Law

- 1. Future I/O BW requirements will drive revolutionary changes!
- 2. Chip-to-Chip interconnect rates scale with Moore's Law
- 3. Out of the box or blade rates, follow the chip-to-chip rates
- 4. By ~2010, we will see 100G backplane data rate regmts

Moore's Law exponential increase in transistor densities 4 will drive equal growth in backplane data rates.

Technical Feasibility of 100GbE

- Solutions available today
 - 40G Shipping
 - Low cost DWDM (LX4) shipping
 - Future LX5 (4x25G?)
 - VCSEL arrays (snap 12 connectors) shipping
- Integrated Silicon Photonics
 - High Data Rate High integration a reality today.
 - 10Gb/s CMOS modulators have been shown 2005 (Intel)
 - Higher rate modulators currently being developed
- HSSG for Backplanes
 - Optical backplane on the horizon
 - 4x25 and 5x20 seem equally doable, 4x20 may be easier because of VCSEL and CMOS limitations

HSSG Technical Feasibility

20Gb Electrical transmission

- 20 Gb transmission over FR4 using 90nm CMOS demonstrated.
- 7" FR4 with 2 sockets and packages, using Tx and Rx equalization
- Power consumption of 11.8 mW/Gb/s
- As CMOS moves to 65nm and 45nm feasible electrical rates will increase.

Technical Feasibility: Si Photonics Recent Progress

QCSE in Si Polarization^{*} Stanford *This is not exhaustive Indep. Rings Stim-Emission Surrey Broadband Brown Raman Laser Raman λ Conv. **Amplification** CW Raman Laser UCLA **UCLA** Cornell Intel 10Gb/s Modulator >GHz MOS Modeled GHz Intel, Luxtera Modulator E-O effect PIN Modulator Intel Surrey, Naples 1.5Gb/s Ring Mod. strain-silicon Cornell Integrated 30GHz Si-Ge DTU **DGADC** APD+TIA **Photodetector** 39GHz Si-Ge Surrey UT **Pioneering IBM Photodetector** Hybrid silicon work by Inverted PBG WG. Univ. Stuttgart PBG WG Dr. Richard Laser Taper <7dB/cm PBG WG <3db/cm <25dB/cm Soref NTT, Cornel early 1980's) IBM, FESTA, NTT NTT IBM 2002 2003 2005 2004 2006

Device performance making significant advances

Datacom will drive next generation technologies

- Traditionally
 Datacom has
 trailed
 Telecom
- 100GE will be a disruptive technology.
- 100GE will be an inflection point, Datacom becomes the driver of technology.

Paul Toliver, OIDA 100Gb Ethernet Forum. San Jose CA, August 29 2006

Cost vs. Units 10GE

- Volume has increased exponentially
- Cost has dropped exponentially

Cost vs. Reach

- Short links are cheaper.
- Cost Multiplier between long and short links has remained 'constant'
- Shorter links will drive volume and cost

100G Ethernet Considerations

- Lower Speed solutions are less interesting
 - 40GbE for backplanes is available today
 - 4 Lanes 10G-KR
 - Won't meet platform requirements by time standards are released (4+ years)
- 100GbE Solution Possibilities
 - 10 lanes of 10G BASE-KR
 - Routing problem would be quite severe
 - 4x25Gb 'KR' like link
 - CMOS implementations will be a challenge
 - Trace routing problem reasonable
 - 5x20Gb 'KR' like link
 - CMOS implementations still a challenge
 - Trace routing problem reasonable

100GE Optical Considerations

- Optical backplane on the horizon
 - time until roll out still unclear?
- Both a 4x25 and 5x20 seem equally doable.
- 5x20 may be easier because of VCSEL and CMOS limitations
 - A 5x lane split seems un-natural.
- Low number of links (4-5) links
 - high data rate CMOS and Lasers
 - large amount of equalization required for backplane
 - Relaxed routing requirements.
- High (8-10) links
 - Can leverage current KR specs.
 - Routing and connectors become an issue.
 - Number of Lasers becomes costly.

Tradeoffs for # of lanes Proposal

- Low number of links (4-5) links
 - -high data rate CMOS and Lasers
 - large amount of equalization required for backplane
 - -Relaxed routing requirements.
- High (8-10) links
 - -Can leverage current KR specs.
 - -Routing and connectors become an issue.
 - Number of Lasers becomes costly.

Summary

- HSSG should target 100GbE as the next speed bump for Ethernet
 - Needed to get ahead of next generation platform requirements
 - Lower speeds (e.g. 40 GbE) will not be enough
 - HSSG should also address blade backplanes along with data centers, metro and long haul networks
- 100Gb/s Technology is feasible today
 - 40G (OC768) shipping today in volume
 - Optical technology exist today
- Datacom apps likely to drive next generation Ethernet speeds
 - Cost effectiveness of the solution is key for deployment
 - Shorter reach optics for data centers → lowered optics costs

Backup

Drive optics to high volume & low cost

