

WDM Alternatives for 100GE 40km SMF application

Kengo Matsumoto Sumitomo Electric Industries, LTD. Nov, 2007

Sumitomo Electric IND./Excelight IEEE802.3 HSSG,Atlanta

Supporters

- Hideki Isono Fujitsu, Ltd.
- Kazuyuki Mori Fujitsu Laboratories, Ltd.
- Shoichi Ogita Eudyna Devices Inc.
- Eddie Tsumura Excelight Communications, Inc.
- Masayuki Shigematsu Innovation Core SEI, Inc.
- Yasunori Murakami Sumitomo Electric
- Tsukuru Katsuyama Sumitomo Electric

Consensus to date on 40km SMF reach objective

- > For metro applications
- > 4 X 26Gbps WDM architecture
- **DWDM grid with wide spacing (400 to 800GHz)**
- > Transmitter with cooled EML
- > Receiver with PIN-PD and SOA pre-amplifier

Technical Feasibility of 100GE Alternatives (WDM) - 40km WDM spacing comparison-

WDM spacing	DWDM with w	CWDM		
	400GHz	800GHz	(For reference)	
Situation				
10km	Doable	Doable	Doable	
40km	Doable	Doable	Unrealistic	
Comparison				
Optics performance stability over temp.	Yes	Yes	Yes	
RX interoperability between 10 and 40km	Yes	Yes	No	
LD wavelength yield	Concerns	No problem	No problem	
WDM OMUX size	Concerns	No problem	No problem	
skew and dispersion	smallest	moderate	Too large for 40km	
SOA	FWM non-linearity	Gain Slope/NF	Band Width	

800GHz spacing may offer higher yield and lower cost!

Technical Feasibility of 100GE 40km Alternatives (WDM) - 800GHz spacing possibility analysis procedure -

- 1. Estimate the loss budget and Compare the Results with 400GHz spacing.
 - Edit and use the spread sheet "10GEPBud3_1_16a.xls" for 100GE.

2. Possibility of SOA for 800GHz spacing

- ✓ SOA noise impact to the receiver sensitivity
- ✓ SOA evaluation for each WDM spacing
- ✓ Receiver sensitivity estimation

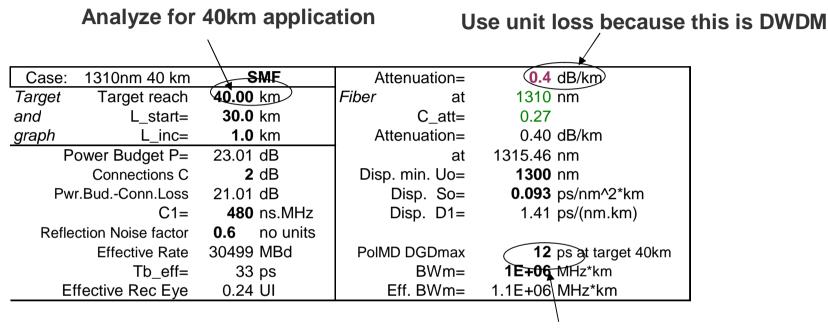
3. Summary

✓ Summary

Spread sheet edit for 100GE - TX parameters -

400GHz Spacing: 1308.56nm,1310.85nm,1313.14nm,1315.45nm+/-0.36nm 800GHz Spacing:1304.01nm,1308.56nm,1313.14nm,1317.77nm +/-0.72nm

26Gbps X 4Lane		Assume the worst tr(20-80%) is 15ps			
	Basics Input=	Bold 7.04	Ts(20-80) Ts(10-90)	23 ps	Assume –130dB/Hz
7dB is minimum Ext. ratio	Transmitter	25781.3 MBd	RIN(OMA) RIN at MinER RIN_Coef=	(-130 dB/Hz -133.5 dB/Hz 0.70	
	<u>Uw (see notes)</u> Tx pwr OMA= Min. Ext Ratio=	0.0182 nm +3.08 dBm ★ 6.99 dB	Det.Jitter DCD_DJ= Effect, DJ=	6.0 ps inc. DCD 6 ps TP3	
Mask Proposal is	"Worst"ave.TxPwr Ext. ratio penalty	1.83 dBm 1.76 dBo	MPN k(OMA) Tx eye height	0.00 (UI) ex DCD 0 56.2%	
Below.	Tx mask X1= X2= Y1=	0.3 UI 0.4 UI 0.25	Refl Tx ModalNoisePen Tx mask top	-12 dB 0 dB 0.2 UI	


✓ Other parameters are the same as 10GE.

✓ Compare the penalties and pick up the worst wavelength for each spacing.

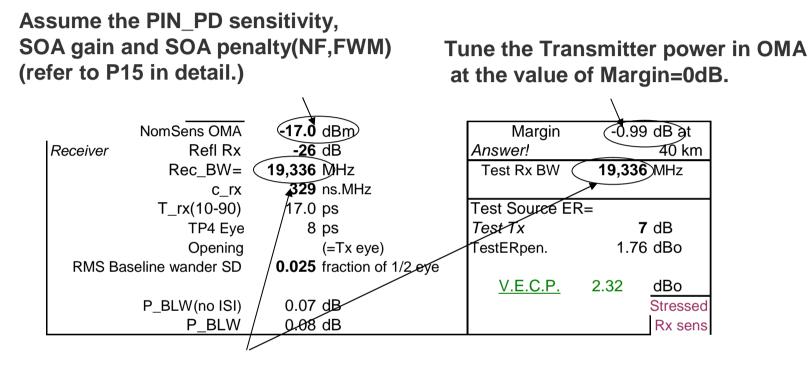
 ✓ Regarding to the TX mask specification, our proposal is the same as 10GE. (X1,X2,X3,Y1,Y2,Y3)=(0.25,0.4,0.45,0.25,0.28,0.40)

Spread sheet edit for 100GE - Channel parameters -

0.3UI

✓ Regarding to the DGD, we refer to the SONET specifications Supplement 39 to the G Series of ITU-T Recommendations

"9.3 Polarization-mode dispersion


For NRZ transmission up to 40 Gbit/s, the maximum DGD is set to 30% of the bit period, corresponding to a maximum 1-dB path penalty. "

✓ PDL(PDG) of WDM filters and SOA is around 0.2dB. It may be negligible.

Spread sheet edit for 100GE

- RX parameters -

Set the receiver BW=25.781GHz X 0.75

Technical Feasibility of 100GE 40km Alternatives (WDM) - 40km WDM spacing comparison-

WDM Spacing	DWDM		Reference	
	400GHz 800GHz		10GbaseER	
Target Reach	2 to 40km	2 to 40km	2 to 30km	2 to 40km
Chromatic Dispersion(ps/nm)	-60ps/nm 58ps/nm	-79ps/nm 67ps/nm	546ps/nm	728ps/nm
max DGD(ps)	12ps	12ps	19ps	
max skew between CHs(ps)	344ps	754ps		
Max.CH Insertion Loss(dB)	18dB	18dB	10.9dB	10.9dB
Penalties (dB)	3.0dB	3.1dB	3.6dB	4.1dB
Power Budget (dB)	21.0dB	21.1dB	15.0dB	

✓ Use anslow_02_0107.xls for Skew and Dispersion calculation.

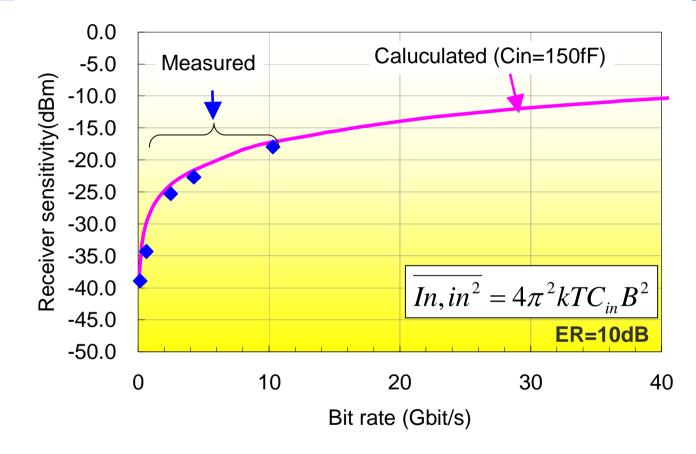
✓ Reasonable dispersion penalty (<2dB) may be expected with -79 and 67ps/nm dispersion.

- \checkmark Max. skew 754ps is under the maximum skew level discussed in HSSG.
- ✓ Power budget for 400GHz and 800GHz spacing are nearly identical.

Technical Feasibility of 100GE 40km Alternatives (WDM) - 800GHz spacing possibility analysis procedure -

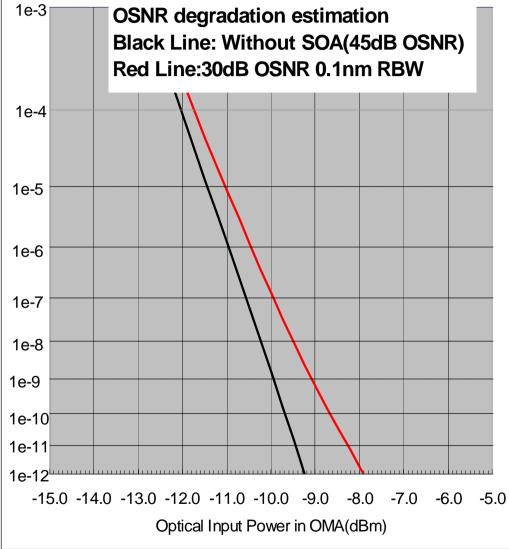
- 1. Estimate the loss budget and Compare the Results with 400GHz spacing.
 - Edit and use the spread sheet "10GEPBud3_1_16a.xls" for 100GE.

2. Possibility of SOA for 800GHz spacing


- ✓ SOA noise impact to the receiver sensitivity
- ✓ SOA evaluation for each WDM spacing
- ✓ Receiver sensitivity estimation

3. Summary

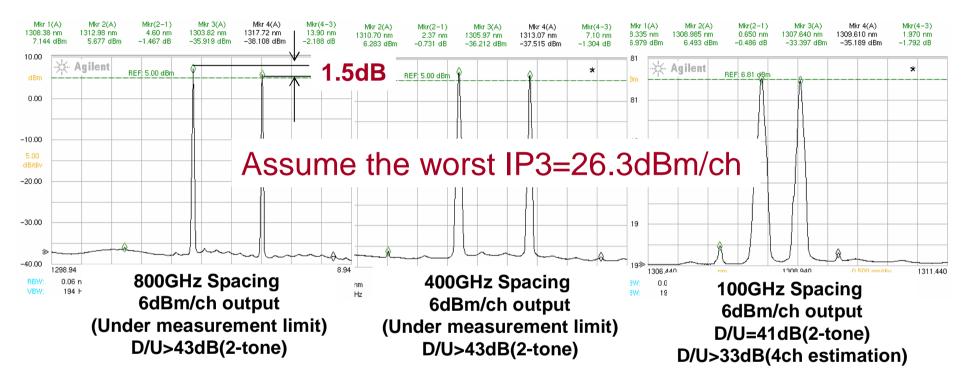
✓ Summary


SOA noise impact to the receiver sensitivity -PIN-RX parameter estimation -

- ✓ Estimate the receiver sensitivity with the formula above at 25deg.C.
- ✓ Good correlation was observed.
- ✓ We estimate that the noise current at 85deg.C is 4.5uArms for 26Gbps TIA.

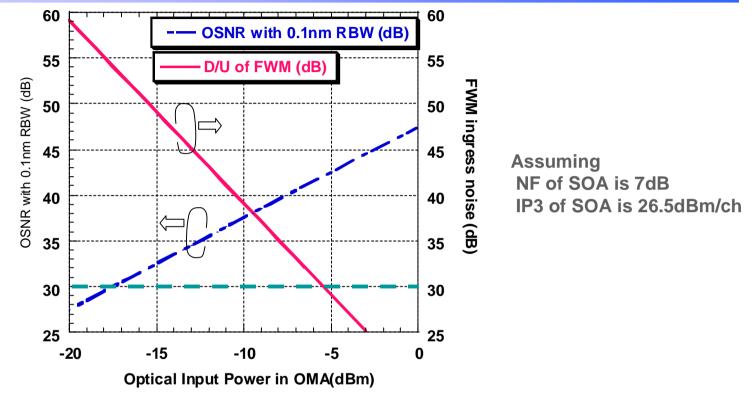
SOA noise impact to the receiver sensitivity -SOA noise impact -

Estimation of receiver sensitivity degradation by OSNR


Assumptions	
Base Rate:	25781.25MBd
PD sensitivity:	0.6A/W
Input noise current :	4.5uArms
Dark Current:	1nA
Receiver BW:	19336MHz
Temp. of RX:	85 deg.C
NF of SOA:	7dB
SOA input:	-17dBm

✓ The OSNR(30dB) penalty is estimated at around 1.5dB.

SOA non-linearity evaluation -2-tone measurement-


SOA 2-tone distortion test results

- Currently available SOA shows promising non-linear performance results ,even with 400 and 800GHz spacing.
- 1.5dB gain difference was observed between 2channels with 800GHz spacing.
 5dB gain slope is estimated over 4channels of 800GHz spacing.

Detailed estimation of Receiver - SOA performance estimations-

- ✓ Further study is required for the impact of non-linear (FWM) ingress noise to the transmission performance.
- ✓ With regard to the OSNR and FWM ingress noise, 30dB D/U may be expected over -5.5 to -18dBm input range with currently available SOA.

Receiver sensitivity estimation

Items	Worst value	Note
Maximum Rx sensitivity (dBm)	-17.0	Per lane.
Minimum SOA Gain at Maximum Rx sensitivity (dB)	15	Per lane. Must consider gain slope, Psat(4ch) of SOA.
ODMUX Loss max(dB)	4.0	Including the coupling losses and filter Loss
PIN_RX sensitivity with SOA in OMA(dBm)	-6.0	PIN_RX sensitivity w/o SOA in OMA+ SOA penalty
SOA penalty for minimum sensitivity (dB)	3.0	OSNR @ 0.1nm BW: 30dB (NF:7dB) FWM ingress noise :30dB
PIN_RX sensitivity w/o SOA in OMA(dBm)	-9.0	Reference Noise current is 4.5uArms at 85deg.C

- ✓ Under the estimation that the 30dB D/U from ingress noise would give another 1.5dB degradation of sensitivity, 40km receiver sensitivity would be estimated above.
- ✓ Further study is required for the impact of non-linear (FWM) ingress noise to the transmission performance.
- ✓ Further improvement is required for the gain slope and dynamic range of SOA.

Optical Link specification example - 800GHz spacing DWDM for 40km application-

	Items	2 to 40km	10GbaseER
ТХ	Average launch power (max) per lane	5.5dBm	4.0dBm
	Average launch power (max) All lanes	11.5dBm	
	Optical Modulation Amplitude (min) per lane	2.5dBm	-1.7dBm
	Launch power (min) in OMA minus TDP per lane	2.1dBm	-2.1dBm
	Transmitter and dispersion penalty (max) per lane	2.0dB	3.0dB
	Extinction Ratio(min)	7.0dB	3.0dB
СН	Channel insertion loss(min)	10.0dB	5.0dB
	Power budget (max)	21.1dB	15.0dB
RX	Average receive power (max) per lane	-4.5dBm	-1.0dBm
	Average receive power (max) all lane	1.5dBm	
	Stressed receiver sensitivity in OMA (max) per lane	-14.7dBm	-11.3dBm
	Receiver sensitivity (max) in OMA per lane	-17.0dBm	-14.1dBm

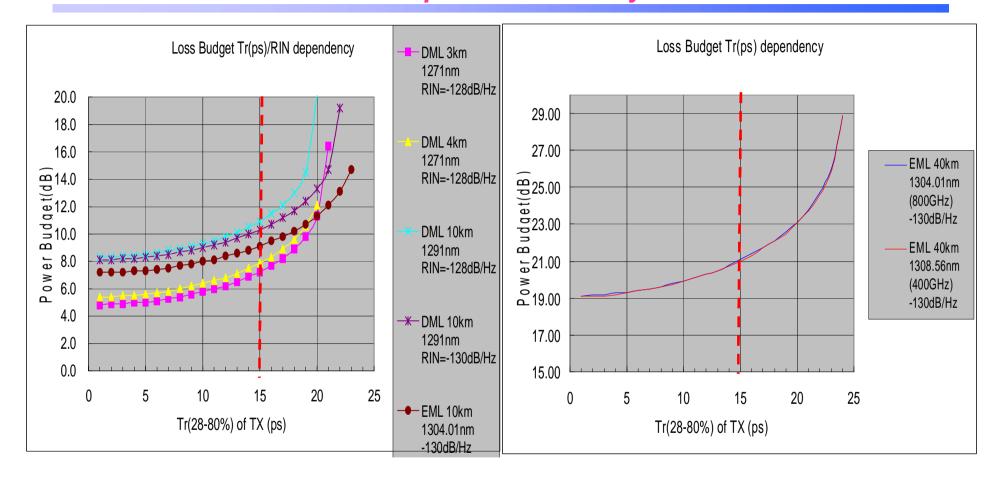
✓AEL Class1 eye safety limit @ 1310nm is 12dBm.

1. Comparison summary

- ✓ From the Loss budget estimation and SOA evaluation, we could observe the possibility of 800GHz spacing for the 100GE 40km transmission.
- ✓ We could expect higher yield and lower cost with 800GHz spacing than 400GHz spacing.
- ✓ Loss budget for 400GHz and 800GHz spacing are nearly identical.

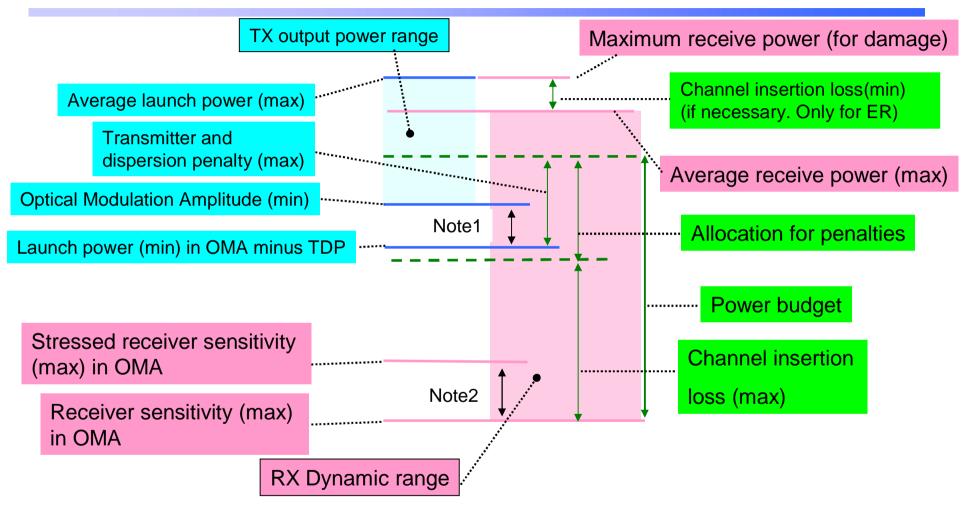
2. Technological Issues

 ✓ Gain slope (estimated around 5dB over 800GHz spacing wavelength range) and dynamic range of SOA need to be improved. Further investigation is required for improvement.


Could not find any fatal issues for 800GHz WDM spacing !

Thank You!

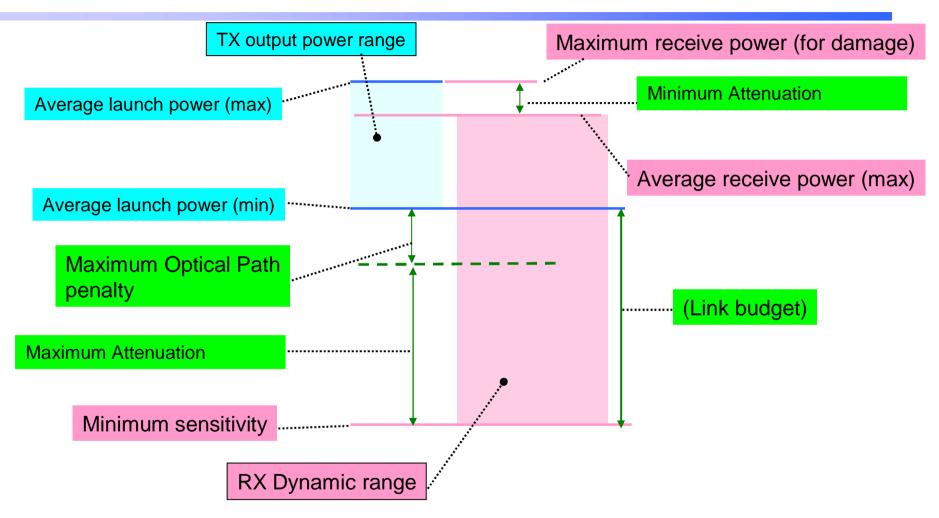
Spread sheet edit for 100GE - TX parameters analysis -



 \checkmark Power Budget depends on Ts and RIN(OMA) value.

✓ In this material, we use Ts=15ps and RIN=-130dB/Hz for EML transmitter as start point.

Link Budget of IEEE802.3ae 10GE



Note1:Even if the TDP < 0.4 dB for ER and <1.0dB for LR, the OMA(min) must exceed this value.

These number came from the margin against the triple trade offs and fiber loss slope in the wavelength range. Note2:The sensitivity difference between Stressed and non-stressed is given as VECP(ISI related penalty).

Link Budget of SONET

