100 G Active Optics Cables

Karim Tatah Cray Inc. <u>ktatah@cray.com</u> 715-726-4678

IEEE 802 Plenary Meeting High Speed Study Group Atlanta, Georgia November 14th, 2007

11/14/2007 К. Т.

100 G Active Optics Cables

- System interconnect in Cray machines
- Cable reach dependence on network architecture
- Cray HPC interconnect approach
- What is the active cable advantage?
- The 12x duplex channels at 10+ Gb/s per channel active cable option description
- VCSEL or Silicon Photonics options
- Advocate 12x active optics cable for the "at least" 100 meters on OM3 physical layer objective:
 - Need to consider 12x duplex active optics @10+ Gb/s per channel and form an MSA early to meet HPC timeline
 - Need to define a 12x active cable electrical connector early

Cray Technology

Multiple Processing Technologies

and application accelerators Custom interconnect and

Network Communications

Systems Administration & Management

Software and tools to manage thousands of processors as a single system

Vector, scalar, massive multi-threading

Packaging

Very high density, upgradeable, liquid and air-cooling

Adaptive Supercomputing

Single integrated system

11/14/2007 K. T.

Cray System Network Bandwidth: Examples

An example of large bandwidth system XT3/XT4 scalar system:

- Processing: ~ 100 TFLOP
- Bandwidth: 48 duplex channels x 3.125 Gb/s = 150 Gb/s per point-to-point cable link

An example of large bandwidth system
 XT5/XT5_h vector-scalar hybrid system:

- Performance: ~ 20 GFLOP per node
- Bandwidth: 24 duplex channels x 5 Gb/s
- = 120 Gb/s per point-to-point cable link

11/14/2007 K. T.

IEEE 802 Plenary Meeting High Speed Study Group, Atlanta, GA

4

A Simplified View of Supercomputing Networks

	Network Graph	Bandwidth	Latency or Hops	Cost	~ Max Cable Reach (m)
Torus (XT3 and XT4)		Ċ	0		7
Hypercube		©©	00	000	8
Butterfly		000			40
Fat Tree or Folded Clos (XT5)		0000	0000	C	20

11/14/2007 K, T.

Links Speeds and Feeds

• GEthernet (GE), InfiniBand (IB), and Fibre Channel (FC) and Cray's point-to-point network links bandwidth

Channel (#) Rate (Gb/s)	1x	4x	8x	10x	12x	24x	48x
2		8 G FC	16 G FC				
2.5		10 GE 10 G-IB			30 G-IB		
3.125							150G-Sea star (XT4)
4	4G-FC						
5		20 G-IB			60 G-IB	120G-Potter (XT5)	
6.25		25G					
8	8G-FC						
10	10 GE	40 GE 40 G-IB 40 FC		100 GE	120G-IB 120-FC		
25		100 GE					

11/14/2007 K. T.

High Density Copper Cables

96 differential pairs connector

24- fiber MTP shown for scaling purposes

♦ 48 differential pairs connector

Space congestion due to the large number of cables and their bulk leaving a chassis or cabinet present cable managements challenges and repair-ability issues such as the limited access to the network boards.

11/14/2007 K. T.

Cray HPC Interconnect Approach

Interconnect Options

Active Optics link

What is an Active Optics Cable?

- Optics and IC Embedded In Copper Connector
- Standard copper connector ends allows interchangeability with copper cable assemblies
- Fiber Ribbons Hard Wired to OE Chips (Pigtail with no optical connectors)

Active Optics Cables

Pros:

- Low cost
- Designed as source-fiber-detector matched for low cost active cable assemblies
- Compact fiber optics cables
- Optics "inside" : Optics hidden from user/customer
- No cleaning of the optics needed
- Provide capability short and long distances
- Allows for low power components
- Tight bend radii (saves cabinet space up to 4")
- Lower weight than copper (Glass and copper densities 2.2 g/cm³ and 8.9 g/cm³ respectively)
- Better security (hard to tap into the optics)

Cons:

- Repair-ability
- Re-configurability

Transceiver Functional Content

• Channel Definition

Examples of Active Optics Cable Suppliers

Manufacturer	4-channel active cable	Connector Package	Laser/Modulator Transmitter
A	4 x 5 Gbps	QSFP	VCSEL
В	4 x 3.125 Gbps	microGIGA ^{CN}	VCSEL
С	4 x 5 Gbps	microGIGA ^{CN}	VCSEL
D	4 x 10 Gbps	QSFP	DFB and Silicon Mod.
E	4 x 5 Gbps	QSFP and microGIGA ^{CN}	VCSEL

WDM and Parallel Optics in a 12x Active Cable

Compts.	WDM	Parallel Optics
Sources	 Edge Emitter and Modulator Data rate 25 Gb/s possible Bias current 10-100 mA (10x power of VCSELs) 	 Vertical Cavity Surface Emitting Laser Data rate at 25 Gb/s not possible at present Bias current 1-10 mA (1/10 th DFB power)
Optical Fiber	 2 single mode fibers: Core diameter: 8.2 μm Cladding diameter: 125 μm Numerical Aperture: 0.12 Attenuation: 0.2 dB/km at 1550 nm Alignment Tolerance: ~ 1 μm 	 24 multimode fibers: Core diameter: 50 μm Cladding diameter: 125 μm Numerical Aperture: 0.2 Attenuation: 2.4 dB/km at 850 nm Alignment Tolerance: ~ 5 um
Detectors	Waveguide or PIN or APD	Surface PIN
Optical Couplers	Optical Mux/Demux	Lens Array

11/14/2007 K, T.

Optics Vs Copper Actives

Parameter	Optics Actives	Copper Actives
Wavelength (cm @10 Gbps in cable)	0.57 x10 ⁻⁴	2.3
Reach (m) (@10 Gbps)	Up to 100	5 to 10
Network Board Trace (cm)	10-50	10-50
Loss (dB/m)	0.002	2
Cable coupling per end (1 dB)	~ 1	~ 2
Cable Weight (Kg)	©	$\overline{\mathfrak{S}}$
Cable Volume (cm ³)	©	$\overline{\mathfrak{S}}$
BER	10 ⁻¹⁵	10 ⁻¹²
Cable Time of Flight Latency (ns/m)	4.99	4.28
Latency per Active End (ps)	~ 0.3	NA
Bend Radius (mm)	5 to 10	75
Power per channel (mW)	~ 200	~ 100
EMI/EMC	©	8

11/14/2007 K. T.

Insertion Loss dependence on Cable Length

• Copper Cable - 26AWG Twinaxial @10 Gb/s:

Insertion loss ~ 2 dB/m

Example: 20 dB power is lost in 10 meters cable length – it is a large power to recover

- Fiber Optics 50 μ m OM3 Fiber @10 Gb/s:
 - Insertion loss ~ 0.002 dB/m

Example: 0.02 dB power is lost in 10 meters – it is neglible power that is lost in transmission – most power expanded in the e-o and o-e conversion

11/14/2007 K. T.

Electrical Connector Options for 12x Active Cables

Does not meet Cray X-talk budget at 10 Gbps	Does not meet Cray board edge density		
	microGiGa ^{CN} 12x Connector		
12x Connector proposed at a recent IBTA			
 ~ 1" Wide with better edge board density Thermal: Actives inboard that offers cooling advantage 	 ~ 2" Wide with worse board edge density O-E active components outboard hard to component		

Active cable industry is encouraged to propose soon a connector and form a 12x active cable MSA.

11/14/2007 K. T.

Conclusion

 Advocate 12x active optics cable for the "at least" 100 meters on OM3 physical layer objective:

Need to consider 12x duplex active optics
 @10+ Gbps per channel and form an MSA early to meet HPC timeline.

 Need to define a 12x active cable electrical connector early.

Thank You

11/14/2007 K. T.