DATE: 21-May-2017
NAME: David Law
COMPANY/AFFILIATION: Hewlett Packard Enterprise
E-MAIL: dlaw@hpe.com

REQUESTED REVISION:
STANDARD: IEEE Std 802.3-2015
CLAUSE NUMBER: 33
CLAUSE TITLE: DTE Power via MDI

PROPOSED REVISION TEXT:

[1] The equation on the transition from the MDI_POWER1 state to the
MDI_POWER_DLY state in Figure 33–31 'Type 1 and Type 2 PD state diagram'
be changed to read '(pse_power_type = 2) + (pse_dll_power_type = 2 *
pd_dll_ready)'.

[2] The assignment 'pse_dll_power_type <= pse_power_type' in the
INITIALIZE state in Figure 33–49 'PD power control state diagram' be
removed.

[3] The definition of pse_power_type be removed from 33.5.3.3
'Single-signature system Variables'.

[4] The definition of pse_dll_power_type be removed from 33.5.3.3
'Single-signature system Variables'.

[5] In definition of pse_dll_power_type in subclause 33.3.3.4 'Type 1
and Type 2 Variables' change the text 'A control variable output by
the PD power control state diagram (Figure 33–49) that ...' to read
'A variable mapped from the alldpXdot3RemPowerType as defined in
Table 33-41 that indicates ...'.

RATIONALE FOR REVISION:

There is an assignment to the pse_dll_power_type variable in the
INITIALIZE state of Figure 33–49 'PD power control state diagram'
as well as a mapping to it in Table 33-41 'Attribute to state
diagram variable cross-reference' so effectively there are two
sources to this variable. There is a case where a Type 2 PD is
connected to a Type 2 PSE that supports 1-event physical layer
classification, Data Link Layer Classification which will result
in two different values for pd_dll_power_type from these two sources.

On entry to the DO_DETECTION state of Figure 33–31 'Type 1 and Type
2 PD state diagram' the pse_power_type variable is set to 1. As a
result of the 1-event physical layer classification that this PSE
will perform, the state diagram will then progress to the
DO_CLASS_EVENT1 state and then, assuming that the PSE starts
supplying power, will progress to the MDI_POWER1 state once the
power_received variable becomes TRUE.

The pd_max_power variable will be set to 0 (4 modulo 4), allowing
the PD to draw up to Class 0 power (13.0W). Since pse_power_type has been set to 1 the state diagram will then progress to the DLL_ENABLE state setting the pd_dll_enabled variable to TRUE enabling Data Link Layer Classification for the PD. At this point however pse_power_type is still set to 1 so the state diagram will transition back to the MDI POWER1 state where it will remain as pd_dll_enabled is now TRUE. Since the PSE supports Data Link Layer Classification the aLldpXdot3RemPowerType attribute within the oLldpXdot3RemSystemsGroup managed object class will return a bit string indicating a Type 2 PSE at some point afterwards when the pd_dll_ready variable becomes TRUE. This, according to Table 33–41 'Attribute to state diagram variable cross-reference', also results in pd_dll_power_type being set to 2. The problem is that, according to the Figure 33–49 'PD power control state diagram', when pd_dll_ready becomes TRUE the value of pse_power_type is latched on to pse_dll_power_type, and at that point in time it is 1. Now it seems that the intent was that when pse_dll_power_type became 2 due to Data Link Layer Classification, the equation on the transition from MDI_POWER1 to MDI_POWER_DLY state became true (pse_power_type = 2) + (pse_dll_power_type = 2) causing, after a delay, entry to the MDI POWER2 state. At that point the pd_max_power variable will be increased from 0 (class_sig modulo 4) to 4 due to the assignment pd_max_power <= class_sig enabling the power drawn to increase from Type 1 to Type 2 limits. The problem is there are two values of pse_dll_power_type once Data Link Layer Classification is in operation, the one based on the Table 33–41 mapping which in this case would be set to a value of 2, and the one output by the Figure 33–49 state diagram, which in this case would be set to a value of 1. As well as the statement that 'State diagrams take precedence over text.' the definition of the pse_dll_power_type variable in subclause 33.3.3.4 'Type 1 and Type 2 Variables' for Figure 33–31 states 'A control variable output by the PD power control state diagram (Figure 33–49) that ...'. Based on this it would seem that the latter value of 1 should be used, however the problem with this is that the MDI_POWER2 state will then never be reached, and the PD will have to continue draw power within the Type 1 limits. It would seem a better approach would be to remove the assignment of pse_power_type to pse_dll_power_type in the INITIALIZE state of Figure 33–49 'PD power control state diagram' and just use the Table 33–41 'Attribute to state diagram variable cross-reference' mapping for Figure 33–31. This is the only use of the pse_power_type and pse_dll_power_type variables in Figure 33–49 so they can also be removed from the associated variable definition lists. The variable pse_dll_power_type however has to gated while pd_dll_ready is FALSE, since at that time aLldpXdot3RemPowerType is undefined and therefore the mapping of Table 33–41 'Attribute to state diagram variable cross-reference' is undefined. Based on this the use of pse_dll_power_type on the MDI_POWER1 to MDI_POWER_DLY transition should be qualified with pse_dll_ready = TRUE, so the equation would become (pse_power_type = 2) + (pse_dll_power_type = 2)
* pd_dll_ready).

IMPACT ON EXISTING NETWORKS:

None. This change will clarify the source of pse_dll_power_type in a
Type 2 PD. Type 2 PDs will have had to have been implemented using
the suggested source, if not a PD would not have been able to draw
power in excess of the Type 1 limit from a Type 2 PSE with 1-event
physical layer Classification and Data Link Layer Classification.

+--+
|Please attach supporting material, if any |
|Submit to:- David Law, Chair IEEE 802.3 |
|E-Mail: David_Law@ieee.org |
|-------- For official 802.3 use --------+ |
|REV REQ NUMBER: 1307 |
|DATE RECEIVED: 21st May, 2017 |
|EDITORIAL/TECHNICAL |
|ACCEPTED/DENIED |
|BALLOT REQ'D YES/NO |
|COMMENTS: |
+--+
|For information about this Revision Request see - |
|http://www.ieee802.org/3/maint/requests/revision_history.html#REQ1037|
+--+