11801 and Use of 4P Cable for 1P Applications

Chad Jones
Chair, IEEE 802.3 PDCC Ad Hoc on behalf of the IEEE 802.3 Ethernet WG
July 2022 Motion at WG Plenary

IEEE 802.3 Power Delivery Coordinating Committee (PDCC) Ad Hoc – Chad Jones

MOTION #17
Move that the IEEE 802.3 Working Group approve
https://www.ieee802.org/3/ad_hoc/PDCC/public/11801_cable_reuse_071322.pdf with
editorial license granted to the Chair (or his appointed agent) as contribution from the
IEEE 802.3 Working Group to ISO/IEC SC25 WG3 for their September 2022 Plenary.
M: Chad Jones
S: Jon Lewis
Technical (>= 75%)
Y: 90 N: 2 A: 9
Motion Passed 14-July 2022, 16:03 EDT
Issue at hand

The IEEE 802.3 Working Group (WG) is aware that SC25/WG3 is drafting standards and technical reports (e.g., ISO/IEC 11801-1 Amd1 and ISO/IEC TR 11801-9911) that support use and reuse of 4P/multipair Category cabling classes to be used in 1P applications with the restriction of 0.75 A per pair.

This restriction breaks the IEEE 802.3 ‘plug-and-play’ interoperability model, as well as the plug and play tradition of ISO/IEC 11801. As such, the 802.3 WG feels the need to make a direct presentation to ISO/IEC JTC 1/SC 25, something that hasn’t happened before as the work between the two groups has always had common goals.
The problem with 0.75 A

• The use of 4P cabling in 1P applications disallows the full current capabilities of Single Pair Ethernet (SPE).

• The use of 4P cabling in 1P applications would limit PSEs to 0.75 A.
 • IEEE 802.3 PSEs or PDs do not know what kind of cabling is connected. Allowing a 0.75 A option constrains ALL options to 0.75 A. This is well below the current needed to deliver the power levels desired, for both current classes and future planned classes.
 • This is a problem with having any two or more levels of maximum current.

• Installation guidance becomes overly complicated
 • A lot of work has gone into appropriate bundle sizing for thermal dissipation for 4P cabling, designed around the worst case 90 W PoE current of 0.433 A (particularly in the United States’ National Electrical Code). A ‘second tier’ of 0.75 A limit complicates this carefully crafted guidance.
 • The possibility of 1, 2, or 3 pairs being energized in shared-sheath cabling as well as grounding issues further complicate the guidance.
Future Single Pair PoE (SPoE) Plans

- Limiting SPoE to 0.75 A will keep 11801-1 cabling, and perhaps SPoE, from addressing the full range of market applications.
 - Note that 750 mA only supports up to PoDL Class 14, which only guarantees 20 W at the PD.

- Similar to 4P PoE, there are plans to raise the power from an SPE PSE to what’s allowed under LPS, i.e., 100 W max (90 W with margin)
 - This power is only extended to systems that can efficiently provide the power. This implies a maximum loop resistance which further implies reach limitations. This is a long way of saying it is not practical or intended to provide power on 1 km SPE links.
 - PoDL Class 15 power can be delivered up to 158 meters and 400 meters with 18 AWG and 14 AWG twisted pair, respectively.

- The present requirements of Clause 104 are only a single example. Other powering schemes, outside of IEEE Std 802.3 use the full extent of NEC Class 2 limits of 2.0 A. Today, non-802.3 power sources dominate the single-pair powering landscape.
Use Cases

- Powering beyond 20 W delivered is required for a variety of applications
 - Media converters extending line powering to existing Class 4 PoE devices will require this (30 W PoE pass thru + power of device)
 - Line-powered PoE field switches will require greater than 20 W even with minimal PoE capability (multiple PoE pass thru ports, likely at 15.4 W at each port + switch device itself)
 - Many sensors, such as field cameras with pan-tilt-zoom and/or heat element capability today require > 20 W delivered
 - High-transient-current actuators would require additional cost of local energy storage without the ability to provide > 0.75 A

- Non-Clause 104 power supplies are used today for a variety of applications on single pairs. These are the applications that SPE seeks to replace.

- Experience with 4-pair PoE has shown a strong market demand to deliver as much power as possible.
 - PoE began at 15.4 W and was revised twice to increase power.
Pitfalls if Use of 4P Cable for 1P Applications is Maintained

• CURRENT CARRYING CAPACITY MAY NOT MATCH FROM BEGINNING TO END
 • Current capacity shall match end-to-end and be no smaller than that presented at the user interfaces (disallow hiding lower capacity behind a larger capacity at the user interface)
 • Structurally disallow mixing of 0.75 A and 2.0 A components

• USER WON’T KNOW THE CURRENT CAPACITY OF THE CHANNEL
 • Clearly identify any restricted current channels, examples might be different color connectors or mandatory labelling
 • Prevent accidental misconfiguration, perhaps different or keyed connectors to disallow interconnection of the disparate channels
 • One might think it’s ok to plug a 0.75 A cable into a 2.0 A channel as the 2.0 A channel can support the 0.75 A requirements, but the guidance must disallow a 2.0 A cable being the visible connection with 0.75 A cable behind the wall.

• NEW INSTALLATIONS USING 0.75 A COMPONENTS RESULTS IN AN ENGINEERED SYSTEM VERSUS A PLUG-AND-PLAY SYSTEM AND WILL NOT BE FUTURE PROOF
 • Future upgrade of a PSE could exceed the channel current capacity leading to potential damage
 • Discourage use of 4P Cable for 1P Applications for new installations

CONCLUSION: USE OF 0.75 A 4P CABLE FOR 1P APPLICATIONS CREATES UNNEEDED COMPLEXITY AND RISK OF MISUSE.
IEEE 802.3 Requests

• The IEEE 802.3 WG requests that use of 0.75 A 4-pair cable for SPE be abandoned. The addition of cable reuse permits sections of the cable plant to not meet the full requirements of SPE, converting this from a plug and play system to an engineered system.

• If this is better achieved by separation of 1P requirement into a separate document from the 4P requirements, then IEEE 802.3 requests consideration of separating 1P generic cabling into a different document than 11801-1.
Backup
802.3 Actions

• Members of the IEEE 802.3 Working Group are discussing adding text to the IEEE 802.3 standard to expressly require cabling with current capacity of at least 2.0 A for SPE applications with IEEE 802.3 defined powering
Warning to system designers:

Not all cabling supports 2.0 A per conductor, and the current carrying capacity of both single pair cabling and multi-pair cabling used for cable sharing within the link segment may not be sufficient to support the power supplied by an SPE PSE. For example, the ISO/IEC 11801-1 Amd1 standard states "A channel made from a combination of single pair and multi-pair cabling components may have a current capacity limited to 0.75 A".

IEEE 802.3 Clause 104 (Power over Data Lines for SPE) compliant PSEs can supply more than 0.75 A and have no way to know what type of cable is connected to the PSE. Therefore, it is expressly disallowed that a compliant IEEE 802.3 Power over Data Lines system use any cabling where the current capacity is less than the highest supported current for the PSEs attached to that link segment. As of this publication, this current is 1.58 A as defined by Clause 104, Table 104-2.

Ignoring this warning could result in premature degradation of your cabling, which could cause performance issues or yield inoperable links.

Installing cabling with a capacity less than the listed PSE output current may violate installation requirements. Please consult any local and national safety and code regulations.
Previous experience of IEEE 802.3

• Some have suggested that multiple current capabilities is no different than having different category cables for performance or too great of cable resistance for PoE
 • The primary effect of either of these is that the system does not perform to IEEE Std 802.3 specifications – no harm is done, and within the scope of 802.3

• Allowing reduced current carrying capacity could create a situation where the current carrying capacity of the link is exceeded by the attached application
 • This requires IEEE Std 802.3 to disallow easily misconfigured cabling or risk additional restrictions placed on the use of SPoE by other standards such as IEC 60364 Low-voltage electrical installations originating in IEC TC64