CEI-28G-VSR Project
Initial Thoughts
Contribution Number: PLL
TITLE: CEI-28G-VSR Project - Initial Thoughts
SOURCE: John D'Ambrosia, Force10
DATE: March 4, 2010

Abstract: Initial Thoughts on issues associated with CEI-28G-VSR Project

Notice: This contribution has been created to assist the Optical Internetworking Forum (OIF). This document is offered to the OIF solely as a basis for discussion and is not a binding proposal on the companies listed as resources above. Each company in the source list, and the OIF, reserves the rights to at any time to add, amend, or withdraw statements contained herein.

This Working Text represents work in progress by the OIF, and must not be construed as an official OIF Technical Report. Nothing in this document is in any way binding on the OIF or any of its members. The document is offered as a basis for discussion and communication, both within and without the OIF.

For additional information contact:
- The Optical Internetworking Forum, 48377 Fremont Blvd,
 Suite 117, Fremont, CA 94538
- 510-492-4040 phone info@oiforum.com

© 2010 Optical Internetworking Forum
Contributors & Supporters

- Sudeep Bhoja, Broadcom
- Ali Ghiasi, Broadcom
- Scott Kipp, Brocade
- Gary Nicholl, Cisco
- Chris Cole, Finisar
- John D’Ambrosia, Force10 Networks
- Jeff Maki, Juniper
- Adam Healey, LSI
- Jon Anderson, Opnext
- Tom Palkert, Xilinx
This presentation considers a number of issues to be addressed for CEI-28G-VSR. CEI-28G-VSR will define an electrical specification for future 25/28G I/O interfaces for potential common use by multiple applications:

- **Ethernet:** 26G (4x26G => 103G)
- **Telecom:** 28G (4x28G => 112G)
- **InfiniBand:** 25G (4x25G, 12x25G)
- **Fibre Channel:** 28G (N x 28G)

This presentation doesn’t make any recommendations at this time.
Industry Bodies Need to Work Together

- It is desirable to define a new 25/28G connector technology for potential common use by multiple applications and multiple form factors:
 - Enables common CEI-28G-VSR channel models
 - Minimizes connector R&D
 - Minimizes cost
- Beneficial if any group making a connector selection process considers needs all applications
An Optics Roadmap

CFP supports 100GE-SR10, and CFP2 will support 100GE-SR4
100G SMF Optical Module Roadmap

Module Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Current Gen</th>
<th>Next Gen CFP2</th>
<th>Next Gen QSFP2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optics</td>
<td>Discrete or Integrated</td>
<td>Integrated</td>
<td>Integrated</td>
</tr>
<tr>
<td>Electrical I/O</td>
<td>Re-timed</td>
<td>Re-timed or Asymmetric</td>
<td>Re-timed, Asymmetric or un-retimed</td>
</tr>
<tr>
<td>Data Rates</td>
<td>10 x 10.3 (103.125 Gb/s) 10 x 11.2 (111.81 Gb/s)</td>
<td>4 x 25.78 (103.125 Gb/s) 4 x 27.95 (111.81 Gb/s)</td>
<td>4 x 25Gb/s (100Gb/s) 4 x 25.78 (103.125 Gb/s) 4 x 27.95 (111.81 Gb/s) 4 x 28Gb/s (112Gb/s)</td>
</tr>
</tbody>
</table>

* Preliminary

Diagram:

- **CFP**
 - 100GBASE-LR4
 - 4x25G LAN-WDM

- **CFP2**
 - CEI-28G-VSR
 - 4x25G
 - 100GBASE-LR4
 - 4x25G LAN-WDM

- **QSFP2**
 - CEI-28G-VSR
 - 4x25G
 - 100GBASE-LR4
 - 4x25G LAN-WDM

Notes:

- CFP, CFP2, and QSFP2 are optical module types.
- Current Gen, Next Gen, and Next Next Gen indicate different generations of technology.
- Optics and Electrical I/O characteristics are key factors in module performance.
- Data Rates specify the throughput capacity of each module.
Next Gen 100G SMF Optical Module Power Dissipation

These lines approximate “Isotherms”

The position of these lines are a result of:
- Ambient Temperatures
- Heatsink Efficiency / Size
- Module Case Temperature

Suggested power consumption and module area ranges of next gen CFP2 and QSFP2 pluggable form factors based on CFP and QSFP isotherms

SOURCE: MSA public web-page
Starting Point: Channel Budget

- Max connector loss: <1.4 dB from 10 MHz-14 GHz
- Max connector ripple: <0.05 + 0.025*f where *f* is in GHz, per SFF-8431 A.4, fitted from 0.25GHz to 14 GHz

Proposal: $0.114+0.8914f^{(1/2)} + 0.460f \quad 0.25 \leq f < 28$

<table>
<thead>
<tr>
<th>Traces</th>
<th>FR4-6</th>
<th>N4000-13</th>
<th>Megtron 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss at 14 GHz /in</td>
<td>2</td>
<td>1.5</td>
<td>1</td>
</tr>
<tr>
<td>Connector loss at 14 GHz</td>
<td></td>
<td></td>
<td>1.4</td>
</tr>
<tr>
<td>Loss allocation for 2 Vias in the channel</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Max Module PCB Loss</td>
<td></td>
<td></td>
<td>2.1</td>
</tr>
<tr>
<td>PCB Trace Length Assuming 10 dB Loss Budget</td>
<td>2.7500</td>
<td>3.6667</td>
<td>5.5000</td>
</tr>
<tr>
<td>PCB Trace Length Assuming 12 dB Loss Budget</td>
<td>4.2500</td>
<td>5.6667</td>
<td>8.5000</td>
</tr>
</tbody>
</table>
Connector Crosstalk Target

- ICN defined same as 802.3ba CL85.10.7 when measured with mated HCB and MCB, except:
 - ICN receiver BW increased from 7.5 GHz to 18 GHz
 - HC B PCB loss at 14 GHz is 2.1 dB
 - MC B PCB loss at 14 GHz is 1 dB
 - 802.3ba Eq 86A-4 loss can be scaled for the MCB and HC B loss
- MDNEXT=1 mV (RMS)
- MDFEXT=2.8 (RMS)
- IC N=3 mV (RMS)
Remembering: Passive Direct-attach copper cabling

NOTE 1 – Only one direction of transmission shown
NOTE 2 – Channel insertion loss is \(C = A + 2 \times (H - F) \)

- **Host channel insertion loss allotment also has a direct impact on cable reach**
- **Consider the CEI-25G-LR loss budget of 25.4 dB, a 3 dB/m bulk cable attenuation, and paddle card losses on the order of the HCB PCB loss**
 - For \(H = 8 \) dB, the cable reach \(R \) is \((25.4 - 2 \times 8)/3 = 3.1 \) m
 - For \(H = 10 \) dB, the cable reach \(R \) is \((25.4 - 2 \times 10)/3 = 1.8 \) m
Manual Tuning of Tx?

- **10G SFP+ issues in an un-retimed Tx module interface**
 - Currently host Tx de-emphasis filter settings needs to be manually tuned
 - **Stacked SFP+ connectors requires a different pre-emphasis optimization**
 - Different channel lengths require different optimization
 - Cannot accommodate manufacturing and temperature variations

- Is this manual method scalable for 25G?
Summary

Areas of further investigation

- Industry Efforts
- Module Power / form factor
- Channel
 - Crosstalk
 - Connector
 - Consideration for impact on Cu Twin-ax solutions
- Is manual tuning acceptable in the future?