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1 Assumptions
In order to derive mathematically a worst-case latency we will need to make cer-
tain assumptions about the network we are dealing with. Following assumptions
are set forth:

• All switches on the network are straight store-and-forward and function
as output queue switches

• All receiving and transmitting ports are functioning independently (HW
router and full duplex)

• All traffic has the same priority.

• Processing time for packets (time between reception and start of trans-
mission of the target port) inside switches is considered to be zero.

• All packets have the same size.

• PHYs on switches have identical speed and transmit/receive single packet
in fixed amount of time of τ seconds.

• Packet source and sink are separated by N switches and each switch has
n input ports with one source connected to each port.

• Network is never congested, we will define this as sum of incoming traffic
to the switch targeted on the same output port over any period of time
n · τ does not exceed output port capacity. This should be true for each
port of each participating switch. This effectively means that no more
than n packets targeted for one output port come from all input ports
during the period of time n · τ . This assumption put burden of traffic
shaping on sources.
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2 Theorem
With the assumptions set forth in section 1 worst-case propagation delay for
the packet from the source to the sink will be

T = (n ·N + 1) · τ (1)

3 Proof
Proof will consist of two parts:

1. construction of example network with delay expressed with formula 1,

2. proof from the opposite that worse propagation value is not possible

First let’s build the network with needed propagation delay. For this we will
imagine that our source of interest emitted a packet, which we refer to as marked
packet. All interfering sources on the network, i.e. all sources but the one we
measure propagation delay for, emit packets in such a fashion that they, for
each switch, all arrive and get queued for transmission just before the marked
packet. This means that when marked packet arrives there are n − 1 packets
queued waiting to be transfered.

Since there are n−1 packets in the queue, it will effectively take τ ·(n−1)+τ =
n · τ seconds for packet to reach the next switch or sink, in case if this switch
was last on the path.

Note that because of the way interfering sources emit their packets, by the
time marked packet gets to the next switch on its path, packets that where in
front of it in the previous switch get transmitted further down the network and
same situation repeats where marked packet finds n − 1 packets waiting to be
transmitted ahead of it.

Since by our assumption there are N switches between the source and the
sink and every switch produces n · τ seconds of delay, adding the time τ is
takes for marked packet to reach a first switch, we get the value for the total
propagation delay as

T = N · n · τ + τ = (N · n + 1) · τ

, which is identical to the expression 1 we’re trying to prove.
Now we shall show that given expression is the upper bound.
Let assume that this is not the case and there is a configuration which

causes greater propagation delay T̃ . This would mean that at least on one
switch marked packet found more than n− 1 packets enqueued when it arrived.
At the minimum there was n packets queued, so adding marked packet we will
get minimum n + 1 packets in the queue total.

Lets show that no congestion assumption made in section 1 is equivalent to
demanding that at no time any output port on switch has more than n packets
in queue.
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Indeed, output port is a leaking bucket with a constant leakage rate, equal
to the link capacity. Number of queued packets can be expressed as

m(t) =
{

α = m(t− n · τ)− ptx + prx —α > 0
0 —otherwise (2)

,where prx is a number of packets arrived from input ports and ptx is the number
of packets transmitted to the output port. By assumption of non-congested
network prx ≤ n.

Naturally ptx ≤ n since n is the maximum number that can be transmitted
at the maximum transmission rate and ptx ≤ m(t − n · τ) + prx since switch
cannot transmit more packets than available to be potentially transmitted. We
can write these two relations in shorter form as

ptx ≤ min(m(t− n · τ) + prx;n). (3)

Let’s consider a moment of time t0 when m(t0) > n for the first time. This
means that ∀t < t0,m(t) ≤ n. We can ensure that such t0 exists if we assume
than m(ts) = 0, ∀ts < n · τ , which means that initially router had no packets
queued for the time period of n · τ .

This allows us to write particularly that m(t0 − n · τ) ≤ n. This in turn
means that

ptx ≥ m(t0 − n · τ) (4)

, since at the minimum all packets queued at the time t0−n ·τ would have been
transmitted by the time t0 because there was less then n of them.

Now if we put together 3 and 4 we get

m(t0 − n · τ) ≤ ptx ≤ min(m(t0 − n · τ) + prx;n) (5)

Now using 2 we will write an expression for maximum value of m(t0)

max m(t0) = max(max(m(t0 − n · τ)− ptx + prx); 0) (6)

Now we will re-write 5, by subtracting m(t0 − n · τ) + prx as

−prx ≤ ptx−(m(t0−n·τ)+prx) ≤ min(m(t0−n·τ)+prx;n)−(m(t0−n·τ)+prx) ⇒

m(t0−n ·τ)+prx−min(m(t0−n ·τ)+prx;n) ≤ m(t0−n ·τ)+prx−ptx ≤ prx ⇒
m(t0 − n · τ) + prx − ptx ≤ prx ⇒

max(m(t0 − n · τ)− ptx + prx) ≤ prx ≤ n

, here we used prx ≤ n (assumption of non-congested network).
Substituting to 6 we get

max m(t0) ≤ max(n; 0) ≤ n.

Thus we get contradiction with means that such t0 does not exist and our initial
proposition that at least one of switches would have at least n+1 packets queued
contradicts with our assumptions of the network not getting congested.

Theorem is proved.
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4 Formula generalization
We’ve assumed in theorem above that traffic is shaped to not exceed network
capacity on intervals of time n · τ . It is easy to show by rewriting expressions
2-6 that if traffic is shaped on intervals of time k · τ, k > n, k ∈ ℵ, it would be
equivalent to requiring that at no time any switch/port would have more than
than k packets queued in the output queue.

This generalization suggests that under new assumption formula 1 will look
like

T̂ = (k ·N + 1) · τ. (7)

Proof that this expression is an exact upper bound is not provided here, but
it’s easy to show that this will be an upper bound.

Indeed, if there’s no switch on marked packet’s path that have more than k
packets queued at any time, than packet will spend at most time k · τ traversing
each switch. Counting in initial time τ to reach the first switch we come to
formula 7.

In order to prove that this is an exact upper bound one merely would need
to construct an example.

In essence formula 7 suggests that if we shape traffic at sources more coarsely
than propagation delay upper bound will increase.

5 Conclusions
We have produced an exact upped bound (worst-case) for propagation delay
under assumptions outlined in section 1. Formula 1 suggests that worst-case
propagation delay does not change with changing link utilization. It does change
with number of hops between source and the sink, number of ports on each
switch and also with the granularity of traffic pacing.

Assuming standard five-port switches (n = 5) and one packet transmission
time of τ = 100µs we will get following propagation figures (using formula 1):

number of hops N 1 2 3 4 5
propagation µs 600 1100 1600 2100 2600

This is under original assumption about proper traffic shaping on the interval
of n · τ = 500µs.
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