Technical and economic feasibility for millisecond deterministic delay in Residential Ethernet

Michael Johas Teener

Plumblinks mike@teener.com

- Why millisecond deterministic delay?
- An example technical approach
- Complexity comparison
- Difficulty of implementation
- Summary

Why millisecond delay?

- Interactive control response
 - should be less than 50ms, best if less than 10ms
 - musical instruments need lowest values
- Simplifies multiple-path control and synchronization
 - some devices on networks will be serially connected
 - ultimate source to ultimate sink may take several trips on network
- Expectation of 1394-based devices
 - single 1394 bus has less than 300µs applicationto-application latency

Why deterministic delay?

- Deterministic delay means bounds on both maximum <u>and</u> minimum!
- Buffer sizes are bounded and small
 - Buffer is sized at difference between max and min delay
- Expectation of 1394-based devices
 - 1394 devices usually have 250µs buffers

Example technical approach

- Provide synchronous services only on full-duplex links
 - but only normal 802.1D restrictions on number of bridges
 - some form of negotiation used to indicate if neighbor on a link is ResE-capable
- If neighbor is ResE-capable:
 - Provide well-known clock for synchronization
 - Synchronous packets are standard 802.3, but distinctly labelled
 - Admission controls for synchronous traffic on a per-link basis
 - Dynamic queue priority based on synchronous pacing

Full-duplex links only

Clock distribution

- All ResE devices periodically exchange "current time" information
 - only with link neighbor, probably using something like MAC control services
- One station in ResE cloud is selected as clock master
 - other stations follow it using a very "stiff" filter
- Very accurate synch is possible
 - less than a microsecond
- Important part is every station knows the current "cycle"
 - cycle is a 8kHz counter

Synchronous packet labelling

- All packets are normal 802.3 format
 - unique length/type
- Use GMRP to handle multicast channel selection?
- Extra "talker channel" field to handle multiple streams from a single station
- Cycle time stamp
 - indicates the cycle that the packet was scheduled to transmit
 - perhaps a second one that indicates when scheduled for transmission from original source
 - ... useful for delay calculations, but this could be done other ways
- Other fields to aid 1394 bridging
 - "synch", etc.

Admission controls

- Listener must confirm resources available along entire path to destination
 - sends "join request" control packet to talker with amount of bandwidth needed (in bytes/cycle)
 - intermediate bridges make reservation, update delay count and pass on control packet
 - if resources not available, packet is stamped as "unavailable", but still sent to talker
 - talker returns "join response" packet to listener with status status includes resource available (or not), and delay
- Obviously, various timeouts and disconnects affect this
 - fun future work!

Admission controls (2)

- Additional listeners also send "join" request
 - but this time an intermediate bridge can respond if it is already routing the stream
- Listener sends "leave" when done
 - only gets to talker if this is the last listener, bridges intercept all others
- Talker is required to send one packet every cycle
 - may be zero length
 - if missing for more than "x" cycles, can be used to take down the connection

Synchronous pacing

 Transmitter sends all packets labelled with cycle "n" as soon as possible in that cycle

©2004

Slide 11

Complexity comparison

- Worst case client MAC will be no more complex than 1394 "OHCI" (Open Host Controller Interface)
 - typically 150k gates including multiple buffers and powerful scripted DMA engine to perform RDMA-type transactions
 - will usually be much simpler for non-computer applications
- Bridge will need extra priority level and required management functions
 - Synchronous priority queue per output port
 250 µs of data per port max
 - Separate routing table for synchronous streams same structure as existing 802.1D
 - Resource manager

new

- Local clock

new

Difficulty of implementation

- Example implementations of IEEE 1394.1 bridges exist
 - much more difficult that proposed RE bridge
 1394 has its own legacy to deal with!
 - early examples running at 800Mbit/sec were commercially shipped in 2000 using FPGAs!
- 802.1D bridges are a great basis to start from
 - many integrated examples, wide range of capabilities

Summary

- Millisecond deterministic delay is technically feasible
 - Example approach is not the only one
 - 1394-based systems exist now
- Millisecond deterministic delay is economically feasible
 - Very minor changes to client are needed
 - Modest changes to bridge are also required
 Will be much smaller than 1000baseT PHY!

Therefore, bridging 1394 buses should be one of the requirements for Residential Ethernet

