

Some Considerations on a Synchronous Frame

2004. 11. 17

Seong-Soon Joo and Tae-Joon Park ETRI ssjoo@etri.re.kr

Isochronous Channel & Synchronous Frame

- Isochronous channel is specified by a synchronous frame
 - a communication stream transport that is uniform in time.
 - the delivery of the physical stream of information is recurring at regular intervals.
- Design considerations on a synchronous frame and synchronous session
 - cycle interval, frame size, number of frames in a cycle, slot size, ratio of synch & asynch frame
 - synchronization, frame identification, synch frame format, frame transmit and receive in a cycle
 - synchronous connection request & grant, assign & collect synchronous bandwidth
 - frame multiplexing, frame relaying, slot add/drop/exchange/switching

2

Requirements on synchronous frame

- RESG's objectives are general requirements
 - Large aggregate bandwidth (greater than or equal to 1G)
 - At least 75% of aggregate bandwidth available for isochronous traffic
 - At least 10% of aggregate bandwidth is reserved for best-effort traffic
 - Isochronous traffic only supported over 100Mb or greater full-duplex
 - Support arbitrary topologies within reasonable limits
- Size matter on synchronous frame
 - cycle interval
 - frame size
 - number of frames in a cycle
 - slot size
 - ratio of synch & asynch frame

3

Cycle and frame size on 100Mbps R-Ethernet

1542*8/100,000,000 = 123.36 usec

IFG + PA + DA .. VLAN_TAG +.. FCS = 12+8+1522 = 1542 bytes

Cycle = 125usec

- For 1Gbps
 - 10% of Asynch traffic : OK
- For 100Mbps
 - 123.36/125 = 98.688%

Three schemes to satisfy 10%~25% bandwidth allocation to asynch

- MTU reassignment
- MAC frame segmentation
- Cycle time of 10 * 125usec
- To preserve the max frame size, a cycle time should be 125*n usec
 Otherwise, it should be changed the asynch bandwidth allocation requirement of 10%

More requirements on synchronous frame

- Application oriented requirements
 - High quality Audio/Video backbone
 - Intelligent agents coordinated backbone
 - IT Robot at home, office
 - House keeping, edutainment, nursing, butler robot
 - Control & actuation, collaboration
 - Ubiguitous sensor network backbone
 - Sensing & actuation, collaboration
 - Time critical short message based command & control
- Size matter on synchronous frame
 - various ranges of transmit
 - 8Kbps : 1byte/500us
 - 2Mbps : 32bytes/125us
- Frame multiplexing
 - slot size : z
 - number of slot in a frame : x
 - number of cycle (multi frame) : y —
 - $max = 64Kbps^*z^*x$
 - $min = 64Kbps^{*}z/y$

x = 50, y = 16, z = 32bytes $max = 64Kbps \times 32 \times 50 = 102.4 Mbps$ $min = 64Kbps \times 32 \div 16 = 128 Kbps$

Conclusions

Objectives of RESG are considered to be more open to broad and future applications

Objective modification

- At least 75% of aggregate bandwidth available for isochronous traffic
- At least 10% of aggregate bandwidth is reserved for besteffort traffic

\rightarrow

- Bandwidth can be reserved for isochronous traffic and best-effort traffic
- Add an objective on bandwidth granularity for isochronous traffic ?

