Possible structuring of ResE services

Michael Johas Teener

Plumblinks

mike@plumblinks.com

Agenda

- What goes where?
- What services are needed
- All services in MAC?
- All services above MAC?
- Conclusions

Note: this is a very preliminary proposal! As an outsider to 802 since 1983, I have a relatively naïve idea of how things might be done.

Assumptions

- Objectives list from September 2004 interim ResE SG and subsequent informal meetings in San Jose
 - fully backwards compatible with 802.3 and higher layers
 - all existing PHYs supported that are at least 100Mb/s and full duplex
 - add precise synchronization, admission controls, and low latency isochronous services based on 8kHz cycles
 - no topology restrictions beyond what is required for 802.1D spanning tree bridges
- General approach as outlined in my presentation at the September 2004 ResE SG
 - http://grouper.ieee.org/groups/802/3/re_study/public/s ep04/teener_2_0904.pdf

What services are needed

- Global precise synchronization
 - "house clock"
- Admission controls
 - management of resources
- Low latency isochronous transport
 - schedule packet for transmit during particular isoch period ("cycle")

Synchronization services for client

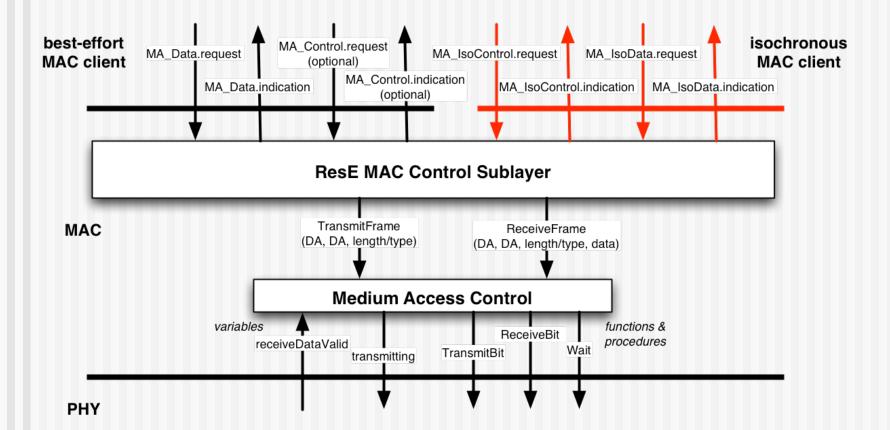
- Clock synchronization direction control
 - from/to network
- Clock to network
- Clock from network
 - higher level scheduling of services
 - need to know current time to know when in the future an event can be scheduled
 - time stamping of streaming data

Synchronization in bridge

- protocol to select master clock in network
 - if no bridge, just uses "highest" MAC address
- accept clock from port connected to network master
- forward clock to other ports

Admission controls for client

- Request channel number
 - Multicast address to use as SA
- Release channel number
- Request bandwidth from path to talker
 - bytes/cycle ... makes reservation in output queue of talker (and all output queues in path from talker)
 - talker address is channel (multicast address)
- Release bandwidth from path to talker
- Accept bandwidth request from listener
 - bytes/cycle ... makes reservation in output queue of self, if no resources, tags request
- Respond to bandwidth request from listener
 - sent to listener that made request
- Accept bandwidth response from talker
- Release local bandwidth reservation

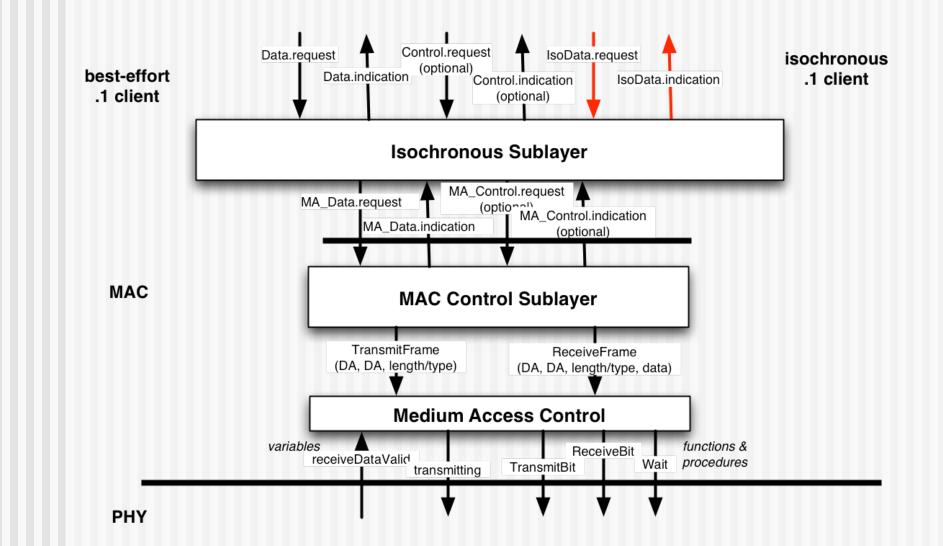

Admission controls in bridge

- allocate channel using GMRP?
- forward bandwidth requests to talker if first request
 - respond directly without forwarding if already routing channel
- forward bandwidth responses to listener

Isochronous transport

- Request transmit of isochronous packet
 - DA, SA, data, cycle "n"
- Receive isochronous packet
 - DA, SA, data, cycle "n"

All services in MAC?



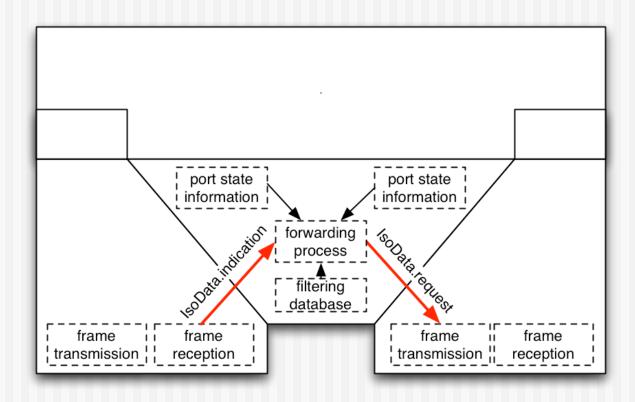
MAC-based services

Advantages:

- All best-effort services/protocol stack unchanged
- New services totally in parallel
- Close to implementation model
- Problems
 - reinvent registration and control services that may already be defined (e.g., GARP-based services)

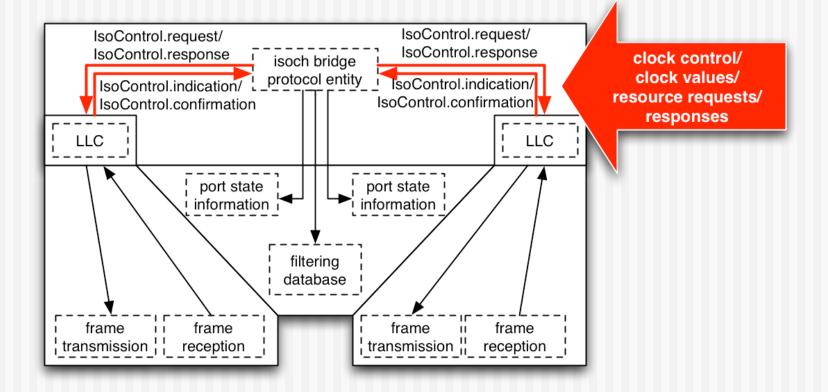
All services above MAC?

Bridge-based services


- Advantages
 - may be easier to specify
 - queues and scheduling concepts already in 802.1D
 - GARP services may be a good match for admission control protocols
- Disadvantages
 - non-bridge devices need many of the services as well
 - will need better clarity for implementers

How about a combination?

- put admission control services into 802.1D
- put isochronous transport services into 802.3
- share synchronization services


Isochronous frame relay

in parallel with best-effort frame relay

ResE inter-bridge protocol

in parallel with best-effort bridge protocols

Thank you!