Layer 2 subscription protocol considerations

Felix Feifei Feng Samsung Electronics

IEEE 802.3 RESG, March 2005 Atlanta

feng.fei@samsung.com

Layer 2 subscription protocol in ResE

ResE can guarantee a deterministic low latency and jitter isochronous transportation service only if the network resources are available along the entire transportation path.

Currently GARP/GMRP is a most related L2 protocol for subscription function, but:

- A flooding style scheme.
 - In GMRP the multicast group membership information will be disseminates across all the bridges in the network, which cause inefficiency
- The bridges only get the reachability information of multicast listeners but without the subscription indication since talker and path-specific information are not disseminated.
 - For the subscription, a protocol whose session runs directly along the stream path will be preferred.

Desirable ResE subscription protocol functions

Feature	Preference
Specify resource subscription information	Necessary
Support unicast and one-to-many multicast	Necessary
Merge flow for multicast session	Necessary
Be adaptable to routing changes	Necessary
Be adaptable to listener membership changes	Necessary
Support CBR flow spec	Necessary
Be robust to certain signaling packet deficiency	Necessary
Control the signaling overhead	Necessary
Support many-to-many multicast	Optional
Adapt to dynamic changing of flow spec during one session	Optional
Support heterogeneous listeners environment	Optional
Support VBR and other flow spec	Optional

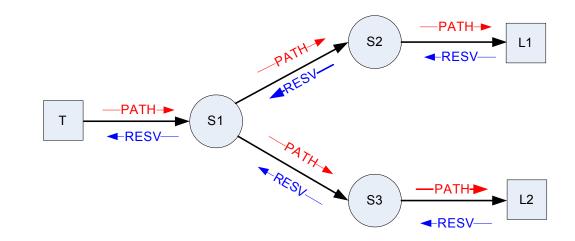
RSVP basics

RSVP is primarily a vehicle used by applications to communicate their requirements to the network in a robust and efficient way

□ It is a signalling protocol that installs and maintains reservation state information at each routers along the path of a stream.

Basic operation

Listeners join multicast group via IGMP (For L2 applications, this can be GMRP)

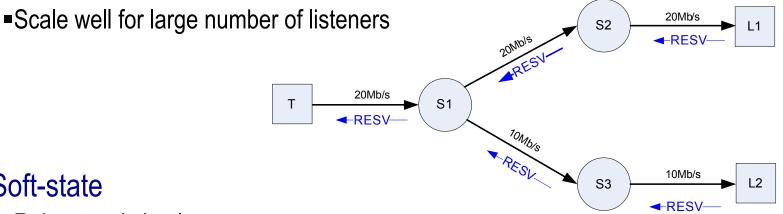

Talker sends PATH messages to listeners (unicast or multicast)

Listeners send RESV messages back to talker

□Message types:

- ■Path, Resv
- PathErr, ResvErr
- ■PathTear, ResvTear

ResvConf


RSVP main features

Receiver-initiated

- Support both unicast and many-to-many multicast well
- Support heterogeneous receiver environment where each receiver is responsible for choosing its own requirement of reserved resources, initiating the reservation and keeping it.

□Flow merging

Reservations are merged at the intermediate nodes. The "largest" flowspec will be forwarded

□Soft-state

- Robust and simple
- Providing graceful support for dynamic membership changes, routing changes and reservation changes

RSVP main features (cont.)

Several reservation styles

- Wildcard-Filter, Fixed-Filter, Shared-Explicit
- •Fit a variety of application requirements in multipoint-to-multipoint environment

Interoperability

RSVP is designed to operate correctly through a non-RSVP cloud. This feature may be employed for non-ResE Clouds

□Separation of reservation from routing

In Layer 2, RSTP can provide necessary interaction

Unidirectional data flows

Possible simplification points

□Support only unicast and one-to-many multicast

No need for different reservation styles in ResE

□Support only CBR streams

flowspec can be simplified

Homogeneous listener environment

Assuming in each session all listeners have the same reservation requirement

• Then "killer reservation" problem is alleviated, therefore blockade state is not necessary

But at the cost of not supporting heterogeneous receivers

□Omit optional objects

□ Fix the number, length and order of objects

RSVP implementation example

Low-end 68040 processor with bus speed of 32MHz:

- Trigger message: 0.73 ms for PATH, 0.37 ms for RESV
 - approximately 900 flow setups/s
- Refresh message: 0.33 ms for PATH, 0.29ms for RESV

□2400 flows with a refresh interval of 30s

- Requires about 230 kb/s of bandwidth (when PATH: 208 bytes, RESV: 148 bytes)
- In ResE the refresh interval should be shorter

(Source: Ping Pan and Henning Schulzrinne, ACM Computer Communication Review, 1999)

Correspondence between L3 and L2

	Layer 3	Layer 2
Routing	RIP, OSPF, MOSPF	RSTP, MSTP
Group membership maintenance	IGMP	GMRP
Resource reservation (subscription)	RSVP	RSVP L2 variant

Summary

RSVP concepts might be a good reference for designing a subscription protocol in ResE

- Similar design goals, all necessary function provided
- Well documented and accepted
- Helpful for seamlessly integration with IP QoS schemes
- Simplification is easier than extension

□Works to do:

- Message formats adaptation
- Simplification choice

Thank you!