Design alternatives of Simple Reservation Protocol

Felix Feng SAMSUNG Electronics

IEEE 802.3 RESG, May 2005 Austin, TX, USA

feng.fei@samsung.com

Design Choice: Number of Signaling Pass

□Two-pass signaling in RSVP

- An important function of PATH messages is to set up the reverse path for forwarding RESV messages, since in IP networks the routing can be asymmetric.
- Other functions of PATH messages include non-RSVP cloud marking and gathering end-to-end QoS information.

ResE

- In ResE, all nodes share a same view of spanning tree. The routing is symmetric.
- However, one-pass scheme has deficiency:
 - •A reservation message will be flooded if its DA aren't existing in bridge's FDB.
 - -Flooding will cause inefficient resource usage and misleading reservation results.
- Three-pass scheme
 - •Listener would "ping" the talker before reservation.
 - •Talker responses to listener ping messages.
 - •Bridges along the path will learn the talker's address.
 - •This scheme incurs additional round-trip delay

Design Choice: Reservation Initiator

Listener imitated

Essential for heterogeneous listener environment

•However, heterogeneous reservation is not useful unless the switches can intelligently discard frames for each specific application.

□Talker initiated

- Applicable for homogeneous listener environment
 - It would significantly reduce the complexity in signaling
 - -Messages follow the data path
 - »But routing for the data path should exist before reservation.
 - -No need for merge of reservation messages from different receivers

Design Choice: Reservation Policy

□Strictly guaranteed reservation

If the admission control failed with a receiver's resource requirement somewhere, then the request will be denied. The receiver should retry his reservation.

□Flexible reservation

- Even the admission control failed with a receiver's resource requirement somewhere, SRP would first reserve the maximum allowable resource locally, and then continue with
 - the original resource requirement (Greedy style)
 - Signaling is simple, but may incur more wasted resources
 - updated resource requirement (Tight style)
 - With receiver initiated scheme, this scheme will cause "virtually heterogeneous" reservation.

- Data frames with flexible reservation should be marked with special flag. Intermediate bridges use this flag to discard frames that exceed the committed bandwidth.
- Flexible reservations may be updated to strictly guaranteed reservations upon reservation refreshing.
- Should provide notifications to related receivers about their flexible reservations.

Example 1: Three-Pass Listener Initiated SRP

□Three-pass signaling

- •Receiver first sends a "ping" message to desirable talker.
- Talker responds to listener ping message
 - •Talker address will be learnt by intermediate bridges
- Listener sends reservation message to talker upon receiving talker ping response
- Listener sends teardown message to talker to release reservation

Listener initiated reservation

- Listener sends reservation message to talker upon receiving talker ping response.
 - •Reservation messages should never be flooded
 - •Reservation messages are merged in the intermediate nodes. A reservation request message travels only as far as the first bridge at which another receiver's reservation already exists for the same session.

Example 1: Three-Pass Listener Initiated SRP (cont.)

- Bridges execute admission control on the port receiving reservation messages
 - •Set up reservation state if the admission control is successful
 - •Send back Error message if the admission control is failed
- Each node periodically refreshes its reservation.
 - •Otherwise, reservation states will age out and send Error messages downstream

□Implicit ACK and explicit NACK

- Application data frames are used as implicit acknowledgement
- Error messages are used as explicit negative acknowledgement

□Flexible reservation

Can be achieved using greedy reservation scheme

Example 2: Two-Pass Talker Initiated SRP

□Two-pass signaling: use GMRP as the first pass

- •Listeners use GMRP registration to join the isochronous multicast group.
- •Listeners use GMRP deregistration to leave the isochronous multicast group. There is no need for dedicate teardown messages.
 - •Upon a GID_Leave.indication event for an isochronous group address on a given port, corresponding reservation states and reserved resources (if any) will be released.

Talker initiated reservation: only one type of message is needed

- Talker sends reservation message towards listeners in the isochronous group.
 - •Carry a flag to indicate whether the resource reservation is successful upstream.
- Reservation messages traverse end-to-end even admission control is failed.

□For each incoming reservation message, intermediate bridge will:

- •Get the outbound ports list for this message from group registration entries
- Execute admission control on each outbound port, and update the reservation states in bridge
 - Update the flag according to the execution result of admission control

Example 2: Two-Pass Talker Initiated SRP (cont.)

- •Upon a GID_join.indication event for an isochronous group address on a given port, intermediate bridge will send a reservation message out of this port if corresponding reservation state has been set up in this bridge.
 - •This will disassociate the set-up delay from the talkers' refresh timer value
- Talker periodically refreshes its reservation.
 - •Otherwise, reservation states will age out and reservation messages with failure flag will be sent downstream

Explicit ACK and NACK

When a listener receives the reservation message, it knows whether the reservation is successful according the corresponding flag.

□Flexible reservation

- Reservation messages carry the "bottlenecked" bandwidth instead of requested bandwidth.
- Reservation messages serve as a notification to receivers about the flexible reservation.

Comparison

Example 1: Three-Pass Listener Initiated SRP

■Pros:

- •Admission control would be done on Resv message receiving port. No need for FDB retrieval.
- Error messages clean up unnecessary reservation automatically.
- •Extendable for heterogeneous reservation scenarios

Cons:

- No explicit ACK
- •Three-pass signaling incurs additional set-up delay
- Several new messages and processing method should be defined: –Ping, PingResponse, Resv, Error, Teardown; Most are new to Ethernet.

Comparison (cont.)

Example 2: Two-Pass Talker Initiated SRP

■Pros:

- •Explicit ACK/NACK
- •Only one new message will be defined. Signaling processing is simpler. –Resv; GMRP is reutilized.
- •Listeners can be non-ResE devices in some simplified scenarios.
- •Be natural for realizing flexible reservation.

Cons:

- •Admission control should be done on Resv message outbound port.
- •Upon failed reservation, listeners should explicit deregister to avoid possible wasted reservation.

Thank you!

SAMSUNG Electronics

IEEE 802.3 RESG 2005 Austin