Evolution of Cabling Standards

TIA/EIA ISO/IEC CENELEC

by Paul Kish NORDX/CDT Chair TIA TR 41.8

UIII Outline

- Market trends
- Standards development
 - where we were
 - where we are
 - where we are going
- Beyond Category 5
 - main challenges & issues

III Market trends

- Increased demand for bandwidth
 - emerging Gigabit networks
- Standards evolution
 - Category 5 / 5e / 6 ...
- Total system solutions
 - performance
 - warranty
 - value-added

5	
3 Ca	tegory 5e
Cat	egory 6
4	

IIII Industry standards

Commercial Building Telecommunications Cabling Standards

- International
- Europe
- United States
- Canada

ISO/IEC IS 11801

Cenelec EN 50173

TIA/EIA 568A

CSA T529

UIII Standards are Good but:

- They define the "WORST" acceptable performance to be met by components, links as well as channels
- It is the the "MINIMUM" acceptable performance. Not the best or ideal.

Cabling standards evolution

Transmission

Bandwidth Return Loss FEXT / ELFEXT

Installation Bundled Cables Category 5e

Delay Skew Attenuation NEXT

Addendum to TIA/EIA 568-A

- Addendum 1 <published>

 Propagation Delay and Delay Skew

 Addendum 2 to be published>

 added req'ts. for NEXT of Connecting Hardware

 Addendum 3
 Clarify hybrid cable and bundled cable req'ts.
 Addendum 4 & 5
 Addendum 4 & 5
 added req'ts for Category 5 and enhanced
 - Category 5 cabling for ELFEXT and Return Loss

Recent Change: Addendum 4 to be reballoted as a TSB

Propagation Delay/Skew 568-A Addendum #1

Limits For 100BASE-T4 = 50 nanoseconds

NEXT of Connecting Hardware 568-A Addendum #2

IIII NEXT between cables 568-A Addendum #3

- The worst pair power sum NEXT loss between cables shall be 3 dB better than the specified worst pair-to-pair NEXT within any cable
 - 2nd ballot in progress
 - under review by IEEE 802.3

Bundled & Hybrid Cables

III Return Loss

<u>Return Loss</u> is a measure of the reflected signal energy in dB

Channel with 3 connectors Return Loss @ 100 MHz

Connector RL (dB)	Channel RL (dB)	Reflected Energy (%)	
14	7.2	19.1	Cat 5
15	8.2	15.1	
16	9.2	12.0	
17	10.2	9.5	
18	11.2	7.6	Cat 5e
19	12.2	6.0	
20	13.2	4.8	

LIII Category 5 and Category 5e ELFEXT and Return Loss

Category 5 components (installed base)

* reasonable worst case assumptions most 2-connector topologies certain 3-connector topologies

Category 5e components

** worst case channel per TSB-67 all 2, 3 & 4-connector topologies

☐☐ Category 5 & 5e performance

Test Parameter	Category 5	Category 5e
PS NEXT	not specified	≥ 27.1 -17log(f/100) dB
ELFEXT	≥17 - 20log(f/100) dB	≥17.4 - 20log(f/100) dB
PSELFEXT	≥14.4 - 20log(f/100) dB	≥14.4 - 20log(f/100) dB
Return Loss 1 £ f < 20 20 £ f £ 100	15 dB 15 -10log(f/20)	17 dB 17 -10log(f/20)

- Category 5 ammendment
 - ELFEXT & Return Loss
- ISO/IEC 11801 2nd edition
 - Category 6 development
 - » PSACR ≥ 0 at 200 MHz
 - » parameters specified to 250 MHz
 - » connector / cable contribution (under study)
 - coupling attenuation / EMI (round robin)
 - Category 7 connector selection Jan/99
 - Fiber type / distance application matrix

IIII ISO/IEC and CENELEC

Process for Category 6 & 7 development

- 4-connector cabling model assumed
- TP/CP electrically visible components
- connector spec. for 2-connector and 4-connector topology
- higher-performance connector spec. adopted if multi-vendor interoperability demonstrated within development cycle
- only one connector spec. is intended

CENELEC EN50173 Addendum

- ballot delayed pending ISO 11801 Addendum
- TIA Cat 5e Return Loss adopted for PL & Ch
- PL delay skew reduced from 45ns to 43ns
- PS-NEXT & PS-ELFEXT may be calculated
- CLC = ISO/IEC = TIA on above amendments
- ISO/IEC ELFEXT & PS-ELFEXT values adopted

CENELEC EN50173 2nd edition proposals

- delete Cat 3, Cat 4, 150 ohm cabling
- specify cable Coupling Attenuation
- 200 MHz Class E / Cat 6 UTP cabling
- 600 MHz Class F / Cat 7 STP cabling
- introduce Open Office (Zone) Wiring
- add Centralised Optical Architecture
- achieve max harmony with ISO 11801

Concept of Bandwidth

ATM Forum Bandwidth IEEE 802

~

Next generation cabling

- ISO/IEC SC25 WG3 announced in Sept / 97 that it will undertake simultaneous development of two new balanced cabling classes and categories to be known as Class E (Category 6) and Class F (Category 7)
- TIA TR 41.8.1 first draft specification
 - > available bandwidth of at least 200 MHz
 - same 8-pin modular connector interface
 - backwards compatible with Category 5
 - > two cable options under study

Category 6 options

	Frequency	Attenuation	PSNEXT	PSNEXT
A)	100		42.3	50
	200	31.8	37.8	44

	Frequency	Attenuation	PSNEXT	PSNEXT
	MHz	Chan. (dB)	Cable (dB)	Conn. (dB)
B)	100		48.3	42.3
	200	28.5	43.8	36.2

Option A) and B) satisfy the criteria PSACR ≥ 0 at 200 MHz Option B) gives 3 dB lower channel attenuation at 200 MHz

Channel Performance

NEXT & FEXT cancellers have no effect on alien crosstalk

Next generation cabling Challenges & Issues

- Modular 8-pin connectors
 - interoperability
- Component interaction
 - cables, cords, connectors & terminations
 - cabling imperfections become more visible at higher frequencies
 - insertion loss deviation
- Receiver sensitivity